
AD 

Award Number DAMD17-97-1-7079 

TITLE: NMR Reconstructive Elasticity Imaging of Breast: Surrogate 
Remote Palpation Using Quantitative 3-D Displacement and Strain 
Estimations 

PRINCIPAL INVESTIGATOR: Thomas L. Chenevert, Ph.D. 

CONTRACTING ORGANIZATION:     University of Michigan 
Ann Arbor, Michigan 48109-1274 

REPORT DATE: ■ September2000J 

TYPE OF REPORT: FINAL 

PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
Fort Detrick, Maryland 21702-5012 

DISTRIBUTION STATEMENT: Approved for Public Release; 
Distribution Unlimited 

The views, opinions and/or findings contained in this report are 
those of the author(s) and should not be construed as an official 
Department of the Army position, policy or decision unless so 
designated by other documentation. 

20010327 0« 
N 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
P&blic report*^ burden lor this collection of information !• estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining 
the data needed, and completing and reviewing this collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of information, inducing suggestions for 
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-01BB). Washington, DC 20503 

1. AGENCY USE ONLY (Leave 
blank) 

2. REPORT DATE 

September 2000 

3. REPORT TYPE AND DATES COVERED 

Final (11 Aug 97-10 Aug 00) 

4. TITLE AND SUBTITLE 
NMR Reconstructive Elasticity Imaging of Breast: Surrogate 
Remote Palpation Using Quatitative 3-D Displacement and 
Strain Estimations 
6. AUTHOR(S) 
Thomas L. Chenevert, Ph.D. 

5. FUNDING NUMBERS 
DAMD17- 97-1-7079 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Michigan 
Ann Arbor, Michigan 48109-1274 

E-MAIL: 
tlchenev @ umich.edu 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Medical Research and Materiel Command 
Fort Detrick, Maryland 21702-5012 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 Words) 
The goal of this research program is to develop a sensitive diagnostic technique based on 
quantitative elasticity imaging permitting surrogate palpation of deep lying breast 
lesions.  The remote measurement of elasticity in breast tissues may provide unique 
information which could increase detection and/or characterization of potentially 
malignant masses not accessible to manual palpation.   The primary technical objective of 
this study is to refine and test an MRI method for the acquisition of high resolution 3- 
dimensional (3D) spatial displacement data through the imaged object for quantitative 
estimation of internal strain and elastic modulus.  Proof-of-concept of the proposed 3D 
displacement-encoding, stimulated echo technique has been completed and published using 
two-dimensional test objects.  A pneumatically-driven deformation device under acquisition 
sequence control has been designed, constructed, and demonstrated to produce highly 
reproducible deformations of the imaged object.  The image acquisition sequence has been 
generalized to encode 3D displacements over a 3D volume using "classic" 3D and fast-spin- 
echo schemes.  Volumetric datasets of 3D phantoms have been acquired and submitted for 
processing using newly developed 3D elasticity reconstruction algorithms.  Comparisons 
between 2D and 3D elasticity reconstructions from simulated and experimental displacement 
data shows higher accuracy of the 3D elasticity reconstruction. 

14. SUBJECT TERMS 

Breast Cancer; Tissue Elasticity; Magnetic Resonance Imaging; Models 

15. NUMBER OF PAGES 

66 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

Unlimited 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. 239-18 
298-102 



FOREWORD 

Opinions, interpretations, conclusions and recommendations are 
those of the author and are not necessarily endorsed by the U.S. 
Army. 

«/A Where copyrighted material is quoted, permission has been 
obtained to use such material. 

Where material from documents designated for limited 
distribution is quoted, permission has been obtained to use the 
material. 

I   rnnort 
Citations of commercial organizations and trade names in this 

report do not constitute an official Department of Army 
endorsement or approval of the products or services of these 
organizations. 

N/A In conducting research using animals, the investigator(s) 
adhered to the "Guide for the Care and Use of Laboratory 
Animals," prepared by the Committee on Care and use of Laboratory 
Animals of the Institute of Laboratory Resources, national 
Research Council (NIH Publication No. 86-23, Revised 1985). 

N/A For the protection of human subjects, the investigator(s) 
adhered to policies of applicable Federal Law 45 CFR 46. 

N/A In conducting research utilizing recombinant DNA technology, 
the investigator(s) adhered to current guidelines promulgated by 
the National Institutes of Health. 

N/A In the conduct of research utilizing recombinant DNA, the 
investigator(s) adhered to the NIH Guidelines for Research 
Involving Recombinant DNA Molecules. 

N/A In the conduct of research involving hazardous organisms, the 
investigator(s) adhered to the CDC-NIH Guide for Biosafety in 
Microbiological and Biomedical Laboratories. 

PI - Signature Date 



Grant Number: DAMD 17-97-1 -7079 

TABLE OF CONTENTS Page 

INTRODUCTION 2 

METHODS AND RESULTS PER TASK 2 -18 

CONCLUSIONS 18 

REFERENCES 20-22 

APPENDIX: 
Publications supported by this grant 
1. T.L. Chenevert, A.R. Skovoroda, M. O'Donnell, and S.Y. Emelianov, "Elasticity reconstructive 

imaging via stimulated echo MRI," Magnetic Resonance in Medicine, 39, pp. 482-490 (1998). 

2. Chenevert, TL, Steele, DD, Emelianov, SY and Shovoroda, AR. "Three-Dimensional Static 
Displacement Stimulated-Echo NMR Strain Imaging". Proceedings of the International Society of 
Magnetic Resonance in Medicine 1999; 263. 

3. Steel, DD and Chenevert, TL, Emelianov, SY, and O'Donnell, M. "Signal-to-Noise Consideration in 
Static Displacement, Stimulated Echo NMR Elasticity Imaging". Proceedings of the International 
Society of Magnetic Resonance in Medicine 1999; 1616. 

4. A.R. Skovoroda, M.A. Lubinski, S.Y. Emelianov, and M. O'Donnell, "Reconstructive elasticity 
imaging for large deformations," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, 46, pp. 523-535 (1999). 

5. Derek D. Steele, Thomas L. Chenevert, Andrei R. Skovoroda and Stanislav Y. Emelianov, "Three- 
dimensional static displacement, stimulated echo NMR elasticity imaging,". Physics in Medicine and 
Biology 45 (2000) 1633-1648. 

Articles "In Preparation" supported by this grant: 
(These can be viewed in PDF format at: 
http://bul.eecs.umich.edu/research/emelian/army.html) 

A.R. Skovoroda, D.D. Steele, T.L. Chenevert, M. O'Donnell and S.Y. Emelianov, 
"Three-dimensional reconstructive elasticity imaging using stimulated echo MRI," 
submitted for publication in the Magnetic Resonance in Medicine (2000). 

A.R. Skovoroda, R.Q. Erkamp, S.Y. Emelianov, and M. O'Donnell, "Nonlinear elasticity 
reconstruction for clearly bounded inhomogeneities," submitted for publication in the 
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (2000). 

Pagel 



Grant Number: DAMD 17-97-1 -7079 

INTRODUCTION 
While manual palpation remains the first diagnostic line of defense against breast 

cancer[l-4], it is unfortunately limited to relatively large and superficial lesions. The 
central hypothesis of this work is that remote measurement of elasticity, or hardness, of 
breast tissues is possible and provides unique information which could increase detection 
and/or characterization of potentially malignant masses not readily accessible to manual 
exam. Our preliminary studies suggest that the proposed methods are capable of 
precisely measuring internal deformation and strain in three dimensions. These data are 
required to reconstruct the elasticity distribution within the object. Consequently, 
technologies developed within the scope of this project may have significant diagnostic 
value for the detection and management of breast cancer. 

Most elastography to date has utilized ultrasound [5-14], although recently MRI is 
gaining considerable interest [15-22]. Usually an external static or dynamic deformation 
is applied while the resultant displacement or propagating shear wave is documented by 
imaging devices. In general, to reconstruct the tissue-specific property of Young's 
modulus in complex systems such as the breast, the 3-D displacement vector must be 
measured over a 3-D volume. In this project, we are developing techniques that measure 
the 3-D displacement vector over any volume in the object at high spatial resolution. 
These data are processed to produce 3-D strain images for submission to a 3D elasticity 
reconstruction routine to map the relative Young's modulus within the volume. 

ACCOMPLISHMENTS IN RELATION TO STATEMENT OF WORK 

The goal of this research program is to develop a sensitive diagnostic technique 
based on quantitative elasticity imaging for eventual surrogate palpation of deep lying 
breast lesions. To this end, specific technical objectives/tasks were adopted and 
summarized in the proposal Statement of Work. Each task is restated below along with 
descriptions of relevant Methods and Progress/Results. 

Technical Objective I:   Data Acquisition and Reconstruction 

Task 1: Month 1-3 
Construction of computer controlled hydraulic compression device capable of producing 
an incremental surface deformation of the mechanical body. This device will be 
triggered by NMR imaging system and have a simple timing/displacement control 
appropriate for phantom studies. 

The proposed method requires that the imaged object experience a relatively 
minor externally-applied deformation force. Based on signal optimization simulations, 
differential deformations below 10% (e.g., <lcm deformation across a 10cm object) 
should be adequate for generation of elasticity maps. Design details of the mechanical 
deformation device were provided in Year 1 Progress Report, although are briefly 
summarized here with the device schematic is shown in Figure 1. Four neoprene bellows 
outside of the NMR coil (rf-coil) provide both upward and downward force to an acrylic 
plate on top of the phantom. The top bellows are on a common pressure circuit, likewise 
the bottom pair are pressurized together to yield uniform vertical displacement along the 
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top of phantom. Solid acrylic yolks at both ends of the device insure that only the top 
plate moves in response to pressurization. Pneumatic elements are driven by air-pressure 
solenoid values that are, in turn, controlled by a transistor-transistor-logic circuit 
triggered by the NMR imaging sequence. 

Figure 1. Side-view schematic of pneumatic deformation system. 

Phase-encode MRI methods, as employed here, require that data are acquired in 
many segments over an extended period of time. Consequently the mechanical 
deformation must be highly reproducible for each segment. Mechanical stability tests of 
the device were performed using a slightly modified version of the 2D-displacement 
encoding MRI sequence. The upshot of these tests was that the system is extremely 
stable and reproducible in application of a 5mm differential deformation (mixing time, 
TM=350msec). The observed phase instabilities were barely above that allowed by NMR 
signal limits. These results suggest mechanical reproducibility within <20microns. One 
significant finding of these stability tests was that the mechanical response of the 
deformation device was significantly faster (~ 150ms) than the "settling time" of the 
tissue-mimicking phantoms (~350ms). That is, internal mechanical reflected waves 
persist beyond point the acrylic drive plates stop. We anticipate that breast tissue will 
have comparably long settling times, thus we will continue to use long mixing times 
(~350ms) in our experiments despite the SNR gains of shorter times. Immunity to long 
persistence mechanical waves was the main motivation to use the stimulated-echo 
approach as is done here. In addition, we propose a "motion-compensated" version of the 
sequence that may allow use of shorter mixing times even during residual motion. This 
concept is described in greater detail in Task 11. 
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Task 2: Month 1-6 
Development of various phantoms to test NMR displacement and strain data acquisition 
and 3-D elasticity reconstruction algorithms. 

Fabrication of phantoms to model the mechanical and NMR properties of human 
tissue is an important step in development and verification of optimized NMR 
displacement-encoded volume simulated-echo pulse sequence. Moreover, simple 
geometries of phantoms allow characterization of the elasticity reconstruction algorithms. 
The phantom materials should closely resemble relevant tissue properties. In addition, 
these materials should be stable (i.e. months) and permit the non-destructive embedding 
of lesion-equivalent targets within the phantom. 

We have previously developed tissue-mimicking phantoms to test NMR elasticity 
imaging device. These phantoms were made of two materials: a) polymer produced by 
M-F Manufacturing Co., Inc. (Fort Worth, TX), and b) gelatin (Sigma-Aldrich Co., 3050 
Spruce Street, St. Louis, MO 63103 USA). The first material, plastisol, consists of a 
liquid plastic combined with either softener (plasticizer) or hardener. By varying the 
proportion of these two components, it is possible to produce composite models of 
desired elasticity. The raw composite materials were stirred and heated to approximately 
170°C. At that temperature the mixture was poured into molds producing a tissue- 
mimicking time-stable phantom of desired shape and elasticity distribution. However, 
two major deficiencies remain. First, plastisol does not have desired tissue equivalent 
NMR properties. Second, due to high temperature rise during phantom preparation, it is 
impossible to produce tissue-containing phantoms using plastisol. 

Several different materials were further considered for NMR elasticity phantoms. 
These materials include Semicosil 921, Semicosil 905 and Silgel 612 (Wacker Silicones 
Co., Adrian, MI 49221), and Rhodorsil RTV 163 (Rhone-Poulenc, France). From all 
tested materials, the Semocosil 921 silicone gel appeared to mimic the tissue properties 
the best. The elasticity of silicone gel can be simply controlled by mixing ratio of two 
components. The composite material is then poured into the mold and cured at the room 
temperature enabling fabrication of tissue containing phantoms. These silicone gels have 
shown high SNR spin-echo signal over the range of hardness variations. In addition, the 
mechanical properties of silicone did not change over 60 days, as was measured by 
Instron-type mechanical system. Therefore, it is possible to fabricate tissue-mimicking 
phantoms of desired shape and elasticity distribution using Semicosil 921 silicone gel. 

Based on favorable NMR and mechanical properties, phantoms were fabricated 
using the Semicosil materials. These phantoms were designed with simple geometries to 
assess spatial resolution and accuracy of 3D strain imaging 3D elasticity reconstruction 
algorithms, and include crossed bars of hard material (6x Young's modulus) with variable 
size and separation (for resolution) and simple spherical inclusions for comparison with 
theoretical results. 

Task 3: Month 1-12 
Development of the NMR displacement-encoded, volume stimulated-echo pulse sequence 
optimized for displacement/strain sensitivity and SNR. 

Two, 3D displacement-encode, volume stimulated-echo pulse sequences have 
been developed. These are shown in Figure 2(a) using "classic" 3D spatial encoding, and 
(b) a fast-spin-echo (FSE) extension to more efficiently encode the 3rd dimension.  The 
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classic 3D sequence, is simplest and implement but unfortunately it is clinically 
impractical due to very long scantimes. Incorporation of the FSE echo train permits a 
scantime reduction by a factor of 1/4, 1/8, to 1/16 dependent on echo train length. To 
date, we have implemented an 8-echo FSE sequence where the FSE phase-encoding is 
applied along the 3rd dimension (i.e. slice direction). Ideally, all slice encode steps are 
acquired in one-shot which greatly reduces scan time (to 13min). Unfortunately, it 
appears that poor gradient hardware performance is introducing eddy current effects that 
confound 3rd axis encoding on our 2T MRI system. Phase shifts from this artifact derail 
strain measurement based on phase. We are in the process of evaluating means to apply 
phase corrections to reduce imperfections in the FSE component of the sequence. 
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Figure 2. Volumetric displacement-encoding stimulated echo sequences using (a) classic 
3D encoding and (b) fast-spin-echo encoding of the third dimension. 
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(b) X displacement 

Figure 3. Volumetric displacement-encoding stimulated echo sequence applied to Semicosil rubber 
phantom containing crossed ramped bars of hard material. Shown are (a) magnitude image, 
displacement images in (b) X right-to-left, (c) Y top-to-bottom, and (d) Z through-plane. Strain 
images (i.e. spatial derivative of displacement) for X and Y displacements are shown in (e) and (f) 
respectively. 

Images of tissue mimicking phantom containing ramped bars of harder material acquired 
via the 3D FSE stimulated echo sequence are shown in Figure 3. Spurious intensity 
modulations in the magnitude image (i.e. conventional MR image) in Figure 3(a) indicate 
an imperfect reconstruction along the 3rd dimension. That is, there is an interference of 
signal from adjacent slices. Despite this, derivative displacement and strain images 
display features of the object (Figure 3(b-f)), however, residual phase error prevent 
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acceptable elasticity reconstructions. Deformation and object symmetry meant the 
displacement and strain in the 3rd dimension (ie. perpendicular to the image) was small. 

Computer simulations were performed to address the tradeoff between displacement 
sensitivity and NMR signal-to-noise (SNR) since optimization of one parameter comes at 
the expense of another. Key parameters that affect SNR and displacement sensitivity 
include: displacement gradient amplitude and duration; applied deformation amplitude; 
image resolution; mixing time, TM; and tissue water diffusion properties. Results of the 
optimization studies suggest greater SNR can be achieved through greater surface strain 
(i.e. deformation of the object by -10%) with a corresponding reduction in displacement 
encoding (reduced from 4 to 1 gauss/cm). Increasing the applied deformation will have 
the added benefit to make the applied deformation more significant relative to 
background motions such as cardiac and respiratory. Yet higher deformation, however, 
introduce the need to consider non-linear elastic effects (see Task 5). 

Task 4: Month 1-12 
Expansion  of previously developed linear elasticity  reconstruction  algorithms for 
volumetric displacement and strain NMR measurements. 

Expansion of linear elasticity reconstruction algorithms were focused on the 
following two aspects: a) development of boundary detection methods to identify the 
regions of uniform elasticity (Young's modulus) distribution, and b) development of 
volumetric linear elasticity reconstruction algorithms for optimized NMR displacement- 
encoded, volume simulated-echo pulse sequence. 

The boundary detection algorithm was developed for specifically NMR elasticity 
imaging. This algorithm is based on the stress continuity condition applicable for soft 
tissue deformations used in these studies. The relevant boundary definition methods were 
detailed in the Year 1 Progress Report. 

The following relates to extensions to a 3D elasticity reconstruction algorithm 

(aJtctx^Xj,) (b) «jjlx^j) (C)  «gfy.X^ (d) Central profiles 

10    20    30 

(«) IC^.Xj,) (I) K^.Xj,) (a) s^vV 
1.5 

<h) Central profiles 

1 

0.5 

0 

-0.5 

r 

10    20    30 
x fmml 

Figure 4. Simulated elasticity maps at planes just outside of (top row) and just within of (bottom 
row) a spherical hard inclusion. The 3D reconstruction, k3, (images on right) was a more faithful 
depiction of truth, k, (images on left), relative to the 2D reconstruction, k2, (images in middle). 
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wherein complete three-dimensional strain data are required to solve for a general, three- 
dimensional object. Previously, only 2D reconstruction algorithms have been applied, 
yet these are anticipated to lead to errors at planes where through-plane strain is 
significant. As an illustration, Figure 4 shows simulated elasticity distributions at a slice 
just within (z=0.95 radius) and just outside (z=1.05 radius) of a hard spherical inclusion. 
These data were used to test the 3D elasticity reconstruction algorithm and provide 
supportive evidence for the need of 3D reconstruction algorithms in general. 

Task 5: Month 10-26 
Development of the nonlinear elasticity reconstruction model capable to process high- 
strain NMR images. 

Large external deformations increase the signal to noise ratio (SNR) of 
displacement and strain images. Unfortunately, large deformations of soft tissue and 
tissue-like materials cannot be described with a linear elastic model. A linear model can 
break down in two ways. First, for most soft tissues, the elastic modulus increases as a 
function of strain (i.e., strain hardening). This effect is often referred to as "material 
nonlinearity." Second, a more complete description of the equilibrium equation, 
including non-linear strain-displacement relations, must be used for large deformations. 
This effect is often referred to as "geometric nonlinearity." Due to the high order 
displacement derivatives resulting from this description, error propagation must be 
minimized in any reconstruction algorithm using measured displacement data with a 
finite signal to noise ratio. 

First, we examined the geometric nonlinearities arising from large amplitude 
deformations. This is demonstrated on the rubber-based phantom with a single, hard 
spherical inclusion (see Figure 5). In general, the nonlinear relation between the strain 
tensor and the displacement vector, i.e. the expressions for the nonlinear Lagrangian 
strain tensor components are 

K eH =-(",.,+",',+"*',"*.;). U = 1.2.3, 

and do not depend on mechanical properties of the object. In this equation and the rest of 
this report, the lower index after a comma means differentiation with respect to the 
corresponding spatial Lagrangian coordinate. In linear case, i.e., for small deformations, 
the last term in above equation is small and can be ignored. The linear and nonlinear 
shear components of the strain tensor are presented in Figure 5. Note that these studies 
were conducted on phantom with almost no material nonlinearities over the deformation 
range applied (average strain up to 15%). The specific purpose of the present study was 
to explore numerical methods minimizing the effects of higher order displacement 
derivatives needed to describe finite amplitude deformations on elasticity reconstruction. 
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Figure 5: Nonlinear shear component (A) of the strain tensor is contrasted with the same 
component computed using linear model (B), i.e., under small deformation assumption. The 
difference can reach almost 25% of the dynamic range as indicated in image (C). 

Previous algorithms for elasticity reconstruction were formulated using the set of 
equations describing mechanical equilibrium in a statically deformed, linear elastic 
medium. Independent of the specific elastic model, however, these equations can be 
posed in either differential or integral form. An integral representation is more 
appropriate for a nonlinear model given realistic measurement noise. Numerical methods 
have been developed for both linear and nonlinear models exploiting an integral 
representation of the reconstruction equations. Both plane strain state approach to 
approximate two-dimensional displacement and full three-dimensional formulation were 
considered. 

Second, the nonlinear form of equilibrium equations using the nonlinear strain- 
displacement and stress-strain relationships were studied. Briefly, the most general 
nonlinear mechanical equilibrium equations for a three-dimensional (3-D) volume V of 
deformed media with the displacement vector U=U(xl,x2,x3) = (w,,u2, w3) in Cartesian 
coordinates X=X(xp x2, x3) are 

3       3 

I{lK^+»,-,)]}, = 0, i=l,2,3 . 
j=\    n=\ 

Here <7. is a component of the 2nd ranked stress tensor and Sin is the Kronecker 
delta symbol. This equation must be satisfied at every internal point of the body. If the 
magnitudes of the spatial derivatives of all displacement components are small, the last 
terms ut ,n can be omitted, producing the familiar linear equilibrium equations: 

3 

£^.,. = 0,   i=l,2,3   . 
7=1 

To complete the system of equations describing internal deformations, the relation 
between stress and strain tensors, as well as the relation between the strain tensor and the 
displacement vector, are needed. Here we will assume that the standard linear relation 
between the stress tensor cr. and the strain tensor ey for incompressible media is still valid 

^ij=pSij+2jU€ij   , 

where p is the static, internal pressure and the shear elastic modulus // is considered a 
constant independent of the strain magnitude. Computing the spatial distribution of the 
shear elastic modulus is the goal of reconstruction.  Note in an incompressible material 
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such as soft tissue the shear and Young's moduli are simply proportional (i.e., E = \sJ2>). 
Thus, shear modulus and Young's modulus reconstructions are equivalent. 

For a general three-dimensional strain state described by nonlinear equilibrium 
equation and stress-strain relationship for incompressible material, the following system 
of equations can be obtained: 

AV{p) = -pB-F, 
where 

A(x,y) = 

l + Mjjj       M| ,2       W|,3 

^2>1 ^2 >2    ^2 >3 

<M3'1 M3'2     l + u3'3. 

, B(x,y) = (bi) = V2U, 

F = {fi) = 2{A^ + ^eiiU,ii + YJ{\-öij)eijU,ij}}, 

V = (^,) = (ß£u liHfilthi )>2 +(/^i )-3.   *=l.2,3; 

v = (<?/&! ,<?/&2,<?/&3), v2 = <?2idx\ +d2idx\ +d2idx\\ 
Note that the nonlinear form of the strain tensor must be used here. 

To solve this equation with respect to unknowns dpi dxx, dpidx2, and dp I dx3 

we first compute the determinant of matrix A, which is 

det(A) = 1 + DivU + det 
fu,xu,v\        fv,vv, 'x     >y 

yv,x v,y j 
+ det 

,y    ',Z 

w    w \w,y n,z) 
+ det 

fu,xu,z 
y 

\w,xw,zy 
+ det 

u,xu,yu,z 

V      V      V y>x y'y y'z 

WWW \'y'x "^'y ,y>zJ 

=V7 

where g = detlgy j is the determinant of the 2nd ranked metric tensor g(j. 

Note that for incompressible materials   g = l, anddet(A) = l, which greatly 
simplifies the inversion of (Al): 

V(p) = ap + ß, 

where cc(x,y) = («,) = -A-1 B, ß(x,y) = (ßi) = -A~xF, i=l,2,3. 
By integrating each component equation of this equation along its corresponding 

coordinate, we obtain: 
p(Xl,x2x3) = <PiP(x° ,x2x3) + Ft =q>2p(xx,x°2,xz) + F2 = <pip(xl,x2,x%) +F3 

where 
*' *' R 

<pt(x,,x2,x3) = exp[J a,(xi,x2,x3)dxi],    F,(xl,x2,x3) = (J-nd^■,)%, »=1,2,3- 

Combining all of these equations, the three-dimensional case reduces to: 

[(^2^3 Lo + (p3<Pl\j>)PQ+i<<P2Fl\x° +<P3F2\xo) + (F2+F3)] IX2 'Xj Aj -t3 

Kfl 9}L + ML )P0 + (ft Fl\xo + <P3Fl\xo ) + (Fl + F3)] p2+2F2 = 

[(^^2Lo+^2^lLo)Po+(^F2Lo+^2FlLo) + (^l+^2)1 n^3+2F3' 
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where p0 = p(x®,X2,x®). 
The caveat here is that last equation does not contain high order spatial 

displacement derivatives, compared with equivalent differential equation, and therefore, 
elasticity reconstruction should be more stable. Again, this equation shows that spatial 
derivatives of all displacement components are needed in general for elasticity 
reconstruction in both linear and nonlinear cases, but any one of the three displacement 
components can be reconstructed using incompressibility processing based on the relation 
(det(A) = l). 

Technical Objective II:   Phantom Studies on 2T 18cm Bore MRI System 

Task 6: Month 7-22 
Development of gel- and rubber-based phantoms with tissue mimicking elastic properties. 
Time stable phantoms with non-palpable inclusions of various shapes and elasticity 
contrast positioned at different locations within the phantom will be produced. 

During the first year of the project, we have identified and tested the materials for 
tissue mimicking phantoms. Our ultimate goal is to simulate the anatomical and 
geometrical features of the normal and pathologically transformed breast using these 
materials. The models of breast containing single or multiple inclusions were fabricated 
using plastisol material (M-F Manufacturing Co., Fort Worth, Texas, USA). 

Our studies, however, suggest that silicone gels better simulate the mechanical 
and NMR relaxation properties of the tissue. Initially, silicone-gel based homogeneous 
phantoms were produced for mechanical and NMR testing (Semicosil 921, Wacker 
Silicones Co., Adrian, Michigan, USA). These tests showed the material had suitable 
NMR properties - like tissue. To control mechanical properties, the Semicosil 921 
contains two components, A and B, wherein different ratios of these components are used 
to vary the mechanical properties of the gel. A tissue-mimicking phantom was 
constructed in several steps. First, background material was prepared by thoroughly 
mixing components A and B in a 1:1 ratio, and then pouring the mixture into a 154-mm 
by 80-mm rectangular mold. The mixture was degassed and cured for 24 hours at room 
temperature to produce a 22-mm thick layer. Then a 25-mm diameter hard sphere was 
prepared from a 1:2.5 mixture of A and B and was placed on top of the layer in the 
middle of the mold. Finally, another batch of background material (1:1 ratio) was poured 
into the mold resulting in a 64-mm by 80-mm by 154-mm phantom with a single, hard, 
spherical inclusion roughly in the center. At the same time, three samples of each batch 
were taken to independently assess the elasticity contrast between the inclusion and 
surrounding materials. These measurements were performed using the force-deformation 
system which showed that the inclusion was four times harder than the background, and 
that both background materials were elastically equivalent. These are highly stable and 
are still in use several months post-fabrication. 

Task 7:     Month 12-26 
Investigation of the capabilities of 3-D NMR elasticity imaging, i.e., determine 
sensitivity, accuracy and resolution of NMR displacement and strain images, and 
reconstructed elasticity (Young's modulus) distribution. 
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As shown by simulation presented in Figure 4, elasticity maps reconstructed from 3-D 
strain data should be more accurate than a 2-D elasticity reconstructions. This should be 
particularly true near the edges of an object where the plane-strain-state is violated; that is 
where the strain along the "through-plane" direction in non-negligible. This concept was 
tested on silicone-gel based phantoms developed in Task 6 using the volume stimulated- 
echo pulse sequence (Task 3). A comparison of the actual experimental "2D" 
reconstruction and "3D" reconstructed elasticity maps for 2 of 32 planes through the 

(a) S^x^) (b) K2(X1,X2) (c) K3(x1,x2) (d) Central profiles 

(e)S1(x1.ica) (f) K2(X1.X2) (9) x^VXj) 

10    20    30 
Xjjmm] 

(h) Central profiles 

10    20    30 
x,[mm] 

Figure 6. Reconstructed elasticity maps at planes just outside of (top row) and just within 
(bottom row) a spherical hard inclusion in a silicone-gel phantom. These results are consistent 
with the simulations (Figure 4) that show the 3D reconstruction, k3, (images on right) more 
faithfully depicts the size of the inclusion. 

phantom data are shown in Figure 6. The planes selected through the phantom and 
general format of Figure 6 were chosen for direct comparison between the simulation 
(Figure 4) and experiment (Figure 6). Ideally, there would be no inclusion visible in the 
plane outside of the inclusion (ie. reconstructions in the top row of Figure 6 should be 
uniform). Violation of the non-negligible strain remote from the object, however, results 
in inaccuracies in 2D reconstructions. These errors are clearly reduced in the 3D 
reconstruction which confirms simulation results. 

Technical Objective III:   Translation to 1.5T Human MRI System 
Task 8:     Month 20-25 
Design and construction of the compression device compatible with human breast 
NMR imaging system and capable to produce wide range of surface deformations. 
Development of sophisticated circuits to control surface deformations and time 
synchronization with human MRI system. 

Translation to the 1.5T unit system has begun. We have a compressor pneumatic- 
drive system and constructed the deformation device suitable for operation on our 
1.5T human MRI unit. Existing phantoms are used for testing on the 1.5T unit. 
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Task 9:     Month 24-34 
Development of appropriate for clinical studies 3-D displacement encoded, volume 
stimulated-echo pulse sequence on human MRI system with data acquisition time 
within or comparable to regular MRI examination. 

Two- and three-dimensional fast-spin-echo (FSE) are still being modified for 
displacement-sensitive, stimulated-echo acquisitions. These sequences are inherently 
more complex on the clinical MRI system, and as such are requiring more time to 
debug. Nevertheless, these sequences will be completed outside of the funded 
project period. 

Task 10:   Month 22-34 
Development of time efficient elasticity reconstruction algorithms more suitable for 
clinical applications. 

Since the reconstruction is a numerical solution to invert high-order differential 
equations, reconstruction time scales with the acquired quantity of slices and the in-plane 
resolution. Previously, volumetric datasets, as generated in this project did not exist, thus 
not all practical issues related to 3D elasticity reconstruction were known. To date, most 
programming efforts have been directed to management of the acquired six-dimensional 
datasets (i.e. position in x,y,z, and displacement-sensitive u^u^u^) which expand to and a 
"12-vector" per pixel (position, and 9-elements of the strain tensor). The 12-dimensional 
data is only the input to the reconstruction. 

Both ultrasound and NMR imaging systems can be used for reconstructive 
elasticity imaging. Relative to ultrasound, NMR has the advantage in overall resolution 
and accuracy for three-dimensional motion estimation. This, in turn, does not constrain 
the mathematical models used for elasticity reconstruction. Elasticity imaging with NMR 
is therefore, volumetric if all components of the displacement and strain are measured. 

The reconstruction of the unknown spatial distribution of shear elastic modulus in 
a region of interest (ROI) of three-dimensional volume V in Cartesian coordinates xt, 
i = i,2,3 under the assumption of linear elastic model can be written in following set of 
differential equations 

(//£23),22-(//£23),33+[/Z(£33 - £22)],23+(/^13),12-(/^12)M3 = 0- 
Computing the spatial, 3-D distribution of the shear elastic modulus ß{X) is the goal of 
elasticity reconstruction. 

Due to the finite noise in measured internal displacement fields, the 
computationally more stable integral-based approach to shear modulus reconstruction is 
used, where corresponding integral equations could be used to reconstruct spatial 
distribution of unknown shear modulus fi(X) = ß(x1,x2,x3) instead of partial differential 

equations. For example, the first equation can be written in integral form as follows 
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S(xi,x2,x3) = ju(£22-£n)-[ju(£22 -e,,)]|xf - 

[M(£22-£n)]\xo +[li(£22 -£u)t°,4 + 

]«&-G,2
2|   )dx2-\{G]2-G\2\  )dx1=Q, 

where 
G12 =(//£12)>2+(/^l3)»3» Gf2=(jU£i2),l+(fl£23)„. 

The simplest and computationally least expensive way to solve this set of 
equations is to reduce any of those equations to the in-plane form, where only in-plane 
distribution of shear or Young's modulus is unknown at a time. It is possible, for 
example, if for any region xi<x° the distribution of shear modulus can be assumed as 

known. In this case last two terms in the first equation at the crossection xi = x% can be 
replaced by their finite-differences analogs and final equation for in-plane shear modulus 
distribution ju(xl,x2)=ß(xl,x2,x%) will be hyperbolic. Such numerical procedure will be 

absolutely stable for any ratio of grid steps Hlht, 1 = 1.2 where H = hj. Therefore, 
reconstructing volumetric elasticity distribution can be performed on a plane-by-plane 
basis. Note that the discretization step H in x3 direction can be different from plane to 
plane. 

A typical result of elasticity reconstruction is presented in Figure 7. The 
experiments were performed on the rubber-based block shaped phantom with a single, 
hard spherical inclusion located approximately in the middle of the phantom. In Figure 7, 
the elasticity distribution within planes crossing the center of the sphere (i.e., R=0) and 
the side of the sphere (x3 = % R„) are presented in Figure 8. Also, 2-D and 3-D based 
reconstructions are contrasted. As expected, the 2-D and 3-D reconstructions are very 
similar for the central plane of the phantom, where out-of-plane strains are small. 
However, the 3-D reconstruction at the edge of the inclusion is far more accurate 
compared to 2-D model. The profile of the elasticity reconstruction throughout the 
longitudinal axis is presented in Figure 9, where again 2-D and 3-D results are contrasted. 
Clearly, 3-D reconstruction is required for accurate volumetric elasticity imaging. 
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Figure 7 (A): 2-D elasticity reconstruction in the 
central plane of the phantom and inclusion 

Figure 7 (B): 3-D Elasticity reconstruction in the 
central plane of the phantom and inclusion. 

Figure 8(A): 2-D elasticity reconstruction in the 
plane 3A of radius away from the inclusion center. 

Figure 8 (B): 3-D elasticity reconstruction in the 
plane % of radius away from the inclusion center. 

..*/ !*♦ 

Figure 9: Longitudinal elasticity profile of 
inclusion using 2-D (dotted) and 3-D models 
(solid). Greater accuracy of the 3-D over the 2-D 
reconstruction is apparent. 
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Task 11:   Month 20-30 
Estimate the influence of the cardiac and respiratory motion to elasticity images and 
develop the approaches to reduce these artifacts. 

The model used for reconstructing the elastic modulus of the imaged area assumes that 
the displacement measured is a static one. That is, that there is no residual internal 
motion of the object while the displacement encoding is taking place—it is either in a 
compressed or relaxed state. To date, all of our formalism assumed the object is static 
before and after displacement during position encoding pulses. Irreproducible 
mechanical ring-down of the deformation system, as well as extraneous physiologic 
motions however, will cause phase errors. Given this eventuality, formalism related to 
the displacement-encoding was generalized to include position, velocity, acceleration and 
all other higher-order terms. Mathematically, the encoded phase is expressed as: 

x T      r        1        ~" 
<t> = 7JGd(t)-r(t) = yJGd(t) 

o o 
where phase (<fi), the information accessed with the imaging sequence, depends on the 
absolute position of the object (r0), its velocity (v), its acceleration (a) and ultimately all 
aspects of the object's internal motion. So, if the object is actually moving slightly 
during the experiment and we have data that contain information about this motion, the 
following question arises: if we use this data with a reconstruction that assumes no 
internal motion, what is the resulting error? Additionally, if we can reduce sensitivity to 
internal motions, can we improve the signal-to-noise ratio (SNR) of the map of the elastic 
modulus? 

Because the encoding gradient waveform (GJt)) is controllable in the experiments, one is 
able to reduce or enhance sensitivity to different aspects of the imaged object's motion. 
To test if these questions would be of concern at all, we developed an encoding waveform 
to provide a phase image that is independent of velocity, but was otherwise essentially 
identical to the waveforms used in the past (in other words, the phase depended on all 
aspects of the object's motion). By comparing the phase obtained with the new 
waveform and that obtained with the old waveform, one can see if the internal velocity of 
the object contributes to the encoded phase in a significant way. 
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Figure 10: The original sequence (on left) is sensitive to all motions; the "velocity-compensated" 
displacement sensitive sequence (on the right) eliminates phase shift due to constant velocity motion 
during application of Gd. 

Figure 11 shows the phase images resulting from both the old (velocity sensitive) and the 
new (velocity insensitive) encoding waveforms, as well as the average difference between 
them for two different mechanical transition times. The first transition time (TM = 270ms) 
is that used in previous experiments, while the second (TM = 50ms) is a transition in 
which we know that the object was still moving during the phase encoding process. 
These results point to several things. First, that the 270ms transition time is sufficiently 
long to allow internal motions to die out. Thus, elasticity maps obtained from data with 
this transition time should be reasonable. Secondly, we can shorten the mechanical 
transition period at least until the two waveforms provide different results, improving the 
SNR of the collected data and the reconstruction. Thirdly, it may be possible to shorten 
this transition more by using appropriate encoding waveforms, increasing the SNR and 
the sensitivity of this method to elasticity variations even further 
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Figure 11: Comparison of original and velocity-compensated sequences on a phantom at short 
mixing time, TM=50ms (i.e. where residual velocity is present), and long mixing time TM=270ms 
(where residual motion is negligible. The non-zero phase difference between the two suggests that 
velocity phase contribution can be isolated, and thus be compensated. 

Task 12:   Month 30-36 
Validation of clinical NMR data acquisition and elasticity reconstruction methods on 
breast tissue mimicking phantoms. 
This task is still incomplete. Two- and three-dimensional fast-spin-echo (FSE) are 
being modified for displacement-sensitive, stimulated-echo acquisitions. These 
sequences are inherently more complex on the clinical MRI system, and as such are 
requiring more time to debug than originally anticipated. Nevertheless, these 
sequences will be completed outside of the funded project period. 

CONCLUSIONS 
Tasks to design, fabricate and refine the "deformation devices", essential for 

phantom studies, are complete. The MRI-compatible hardware, pneumatic components, 
and control circuitry are now fully operational. This device provides excellent control 
and stability in repetitive deformations of an tissue-mimicking objects. Significant effort 
was directed to develop suitable phantom materials. Requirements include: temporally 
stable (over months-years); adjustable mechanical properties to match a range of tissues; 
moldable to simple geometries; tissue-like NMR properties. The Semocosil 921 silicone 
gel generally meets these requirements (with the exception of tissue-like diffusion) and 
will be used in subsequent phantom studies. Three-dimensional, stimulated-echo 
acquisition sequences that have sensitivity to 3-dimensional displacement have been 
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written and applied to gather 3D strain data on simple objects. These data have been 
input in newly-designed 3D elasticity reconstruction routines to yield, to the best of our 
knowledge, the first elasticity reconstruction based on volumetric internal spatial/strain 
data. Methods to reduce data acquisition time, via stimulated-echo spatial encoding have 
not yet been satisfactory in terms of artifact control. Complexity of fast-spin-echo 
sequences on the human MRI unit have slowed our progress to translate these sequences 
to the human system, although these tasks will be completed outside of the scope of this 
project. 
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MAGNETIC  RESONANCE IN  MEDICINE 

Elasticity Reconstructive Imaging by Means of 
Stimulated Echo MRI 

Thomas L. Chenevert, Andrei R. Skovoroda, Matthew O'Donnell, 
Stanislav Y. Emelianov 

A method is introduced to measure internal mechanical dis- 
placement and strain by means of MRI. Such measurements 
are needed to reconstruct an image of the elastic Young's 
modulus. A stimulated echo acquisition sequence with addi- 
tional gradient pulses encodes internal displacements in re- 
sponse to an externally applied differential deformation. The 
sequence provides an accurate measure of static displace- 
ment by limiting the mechanical transitions to the mixing 
period of the simulated echo. Elasticity reconstruction in- 
volves definition of a region of interest having uniform 
Young's modulus along its boundary and subsequent solution 
of the discretized elasticity equilibrium equations. Data acqui- 
sition and reconstruction were performed on a urethane rub- 
ber phantom of known elastic properties and an ex vivo ca- 
nine kidney phantom using <2% differential deformation. 
Regional elastic properties are well represented on Young's 
modulus images. The long-term objective of this work is to 
provide a means for remote palpation and elasticity quantita- 
tion in deep tissues otherwise inaccessible to manual palpa- 
tion. 
Key words: elastic Young's modulus; magnetic resonance 
imaging; elastography; strain imaging. 

INTRODUCTION 

It is well known that tissue elastic properties may be 
altered by tumors. Young's elastic moduli may differ by 
orders of magnitude in soft tissues in various physiologic 
states (1, 2). This finding is the physical basis behind 
manual palpation used to detect "hard" masses (3, 4). 
Indeed, physical examination is the first diagnostic line 
of defense against breast cancer, because nodule hard- 
ness raises suspicion of malignancy. Detection of a new 
breast mass by physical examination is often sufficient 
for surgical excisional biopsy, even when not corrobo- 
rated by other diagnostic tests. Manual palpation of the 
prostate, superficial lymph nodes, and abdominal organs 
are also commonly performed. Unfortunately, sensitivity 
of palpation is relatively poor within deep, dense, or 
heterogeneous tissues. Although the touch of a skilled 
interpreter is considered a powerful diagnostic instru- 
ment, most lesions detected by palpation tend to be rel- 
atively large and superficial. 
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Scientists are attempting to electronically extend the 
touch of the physical examiner using a variety of image- 
based techniques that infer tissue elasticity. The essential 
element is measurement of internal motion and strain in 
tissue structures experiencing mechanical stress. To 
date, most "elastography" has used ultrasound to track 
the relative motion of targets by specular reflection (5-7), 
by Doppler techniques (8-10), by cross-correlation of 
raw or processed acoustic echoes (11, 12), or by tracking 
speckle patterns (13-15). Usually an external static or 
dynamic deformation is applied while internal displace- 
ments or propagating shear waves are documented by 
imaging. 

MRI has also been used to measure internal displace- 
ment and strain components of the heart using spatial 
magnetization tagging (16, 17) and phase-based velocity 
encoding (18). Elasticity reconstruction of an externally 
deformed phantom was demonstrated using magnetiza- 
tion tagging, but this method has spatial resolution lim- 
ited by the tagged grid size and only measures 2D motion 
(19). More recently, motion phase encoding by means of 
bipolar gradients was used to produce two-dimensional 
(2D) displacement and strain maps in media mechani- 
cally driven by external forces (20-23). Strain and dis- 
placement maps infer internal elasticity but are also 
strongly affected by the applied deformational geometry. 
Consequently, these maps do not uniquely reflect inter- 
nal tissue properties (i.e., elastic Young's modulus). 
Maps of dynamic strain-wave propagation, however, do 
allow measurement of local strain wavelength or velocity 
from which the local elastic modulus can be derived (20). 
Shear-wave attenuation, interference from standing 
waves off multiple reflectors, and limited resolvable 
points over the shear wavelength are potential drawbacks 
of this approach. 

Relative to ultrasound, MRI has an advantage in overall 
resolution and accuracy for multidimensional displace- 
ment and strain measurement needed for elasticity re- 
construction. Ultrasound can accurately measure axial 
(i.e., along the beam axis) motion at high spatial resolu- 
tion (smillimeter), but lateral displacement is measured 
at much lower spatial resolution defined by the depth- 
dependent acoustic beam width. The third dimension is 
generally not even considered given the limitations of 
ultrasound. Consequently, reduced motion dimensional- 
ity and overall low motion resolution of the imaging 
system compromise the "elastogram." This shortcoming, 
in turn, constrains the mechanical model used in elastic- 
ity reconstruction. To date, only ID motion models have 
been applied to ultrasound-derived elasticity images of 
tissues in vivo (12, 24). More accurate elasticity images 
are achieved by properly controlling external deforma- 
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tions, leading to 2D elasticity reconstruction within the 
imaging plane (25, 26). 

In this work we present a method to spatially encode 
internal displacement of an object that has undergone an 
externally applied "static" deformation with subsequent 
reconstruction into elasticity maps. Unlike dynamic 
techniques designed to estimate elasticity from observa- 
tions related to strain-wave propagation, static elasticity 
reconstruction involves estimation of local strain from 
displacement and numerical solution of differential elas- 
ticity equilibrium equations. 

THEORY OF RECONSTRUCTIVE ELASTICITY 
IMAGING 

The goal of elasticity imaging is to reconstruct the elastic 
modulus of a desired tissue region using available mea- 
surements of displacement and strain components. In- 
deed, the mechanical properties of tissue are ultimately 
linked to the patterns of internal deformations, but the 
deformational geometry can greatly affect these patterns 
as well. To uniquely image tissue elasticity, the Young's 
modulus must be reconstructed from estimates of inter- 
nal displacement and strain. 

In this paper, the general approach to elasticity recon- 
struction was based on a model of linear, elastic, isotro- 
pic, incompressible media (26, 27). The key equations 
and considerations are briefly presented here. A more 
detailed description of elasticity reconstruction is given 
in an earlier publication (26). 

In linear elasticity, the components of the strain (e^) 
and stress (o\f) tensors under static deformation are: 

1 I dUj     dUj 

2\dXj     dxL 

-(Ui,j+ Uj,i) 

<Tij = pSjj + - Eeij 

[1] 

[2] 

where ut is a component of the displacement vector U = 
[ult u2, u3) in Cartesian coordinates X = [x1, x2, x3), p is 
the static internal pressure, 8^ is the Kronecker delta 
symbol, and E = E(xlt x2, x3) is the Young's elastic 
modulus. Note in Eq. [1], and the entire paper, the lower 
index after a comma means differentiation with respect 
to the corresponding spatial coordinate. 

The static deformation of the medium can be described 
by the equilibrium condition: 

E% + /i=0, i= 1,2,3 [3] 

;=i 

where f; is the body force per unit volume acting in the xi 

direction. In addition, volume conservation for an in- 
compressible medium leads to the following relationship 
between displacement and strain components 

V • U = Sn + e22 + e33 = uln + u2,2 + u3 0 [4] 

Using Eqs. [1] and [2] for stress and strain components, 
and the incompressibility Eq. [4], the equilibrium condi- 

tion with eliminated internal pressure p can be rewritten 
in the following form: 

ZS-i2\^>ll        -^)22/ ~"~ 2(^2,2 ^1>1/-^)12    '    2ß23-^Jl3 

- 2e13E,23 + (V2u2 + (o12n)En - (V2^ - a>12,2)E,2 

+ <o12)3E,3 + V2a>12E + 3(/2)1 - /ll2) = 0 

2e13(Enl — E,33) + 2e23E,12 + 2(u3,3 — ultl)E,13 

- 2e12£',23 + (V2u3 + <o13n)En + o>13,2E,2 

- (V2
Ul - co13,3)E)3 + V2w13E + 3(/3)1 - /1)3) = 0 

[5] 

2s23(il,22     E,33) + 2s13il,i2     2e12-o,i3 + 2(u3,3 

- U2,2)E,23 + tüaa,!^,! + (V2u3 + co23,2)E,2 - (V2u2 

- W23,3)E,3 + V2o>23E + 3(/3)2 - /2,3) = 0 

U2>1 Ul)2>       w13 —   U3>1 Ul U3.2 - u2 

Clearly, the elasticity reconstruction process based on 
Eq. [5] requires accurate measurements of the displace- 
ment vector, or, to be more precise, requires accurate 
estimation of up to third-order spatial derivatives of the 
displacement. Equation [5] can also be written in terms of 
spatial derivatives of strain tensor components. The 
unique solution of the system of coupled partial differ- 
ential equations [5] is determined by the boundary con- 
ditions, i.e., the elastic modulus E[X) must be given along 
the boundary of the reconstruction region of interest 
(ROI). It should also be noted here that the analytical 
solution of Eq. [5] is not generally possible, and numer- 
ical methods must be developed to solve this system of 
partial differential equations. 

Based on the particular geometry of the phantoms and 
deformation system used in these experiments, Eq. [5] 
was simplified. A 2D approximation of Eq. [5] was used 
because the imaged plane was near the center of the 
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FIG. 1. Stimulated-echo data acquisition and object deformation 
sequence. Mechanical transitions occur during the long mixing 
time (TM) such that a static displacement equilibrium is achieved. 
Local displacement between deformation states "A" and "B" are 
encoded by phase shift proportional to "G-displace" amplitude 
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phantom. For such a plane (arbitrarily denoted as x3 = 0), 
the displacement vector components do not vary signif- 
icantly as a function of the out-of-plane x3 coordinate, 
and therefore, the "plane strain state" condition is appli- 
cable. With this condition, Eq. [5] reduces to a single 
nontrivial equation: 

founded by interference of the 
primary shear wave with re- 
flected or standing shear 
waves. To avoid this condi- 
tion, a "static" displacement 
encoding approach was 
adopted. It requires measure- 
ment of internal displacement 
between two or multiple de- 
formations while the object is 
in mechanical equilibrium for 
each measurement. A stimu- 
lated echo sequence with dis- 
placement-encoding gradient 
pulses is used to achieve this, 
as shown in Fig. 1. Mechanical 
transition from state "A" to 
state "B" occurs during the 
stimulated echo mixing time, 
TM. A relatively long mixing 
time allows long-lived elastic 
vibrations to dampen before 
spatial encoding. Because the 
relevant magnetization during 
TM is longitudinal, it is unaf- 
fected by potentially ill-de- 
fined motions during the me- 
chanical transition period. As 
a result, a more accurate static 
deformation measurement is 
achieved. Also note that pre- 
cise synchronization of me- 
chanical and pulsed gradient 
events is not critical as long as 
the mechanical transition be- 
gins after the second RF pulse 

and is complete before the third RF pulse. Similarly, a 
long delay in TE could be used, but this is done at the 
expense of signal lost to T2 decay. 

Local displacement is encoded by means of phase shift 
governed by pulsed-field gradient factors, 

FIG. 2. Urethane rubber phantom containing 
two hard inclusions and held between defor- 
mation plates on top and bottom of the phan- 
tom. Images of stimulated echo (a) magnitude, 
and phase shift proportional to (b) vertical and 
(c) horizontal differential displacement. Dis- 
placement sensitivity of 15.33 ir/mm and dif- 
ferential displacement of =1.4 mm between 
deformation plates was used. 

(£m - £',22)(u1,2 + u2>1) + 2£',12(u2,2 - ui„) 

+ 2E,,1(u2(11 + u2)22) - 2£',2(u1)11 + u1)22) 

$d = y GdT [7] 

[6] 

+ E(u2,m + u2 + 3(/2ll-/ll2) = 0 

Under conditions in which these assumptions are valid, 
only in-plane displacement ua and u2 or their derivatives 
are needed to reconstruct the modulus in the plane x3 = 0. 

Static Displacement Measurement by Means of 
Stimulated Echo MRI 

Shear-wave propagation speed in soft tissue is 1-20 m/s. 
Consequently, a shear wave imparted by a single-stroke 
or an oscillating deformation force may require tens of 
milliseconds to traverse an object «100 mm in size. The 
time for reflected waves to dampen may be much longer. 
"Dynamic" measurements, which encode displacement 
during   shear-wave  propagation,   are   potentially   con- 

where displacement sensitivity, $d, is in units of (radi- 
ans/distance). A phase reference acquisition is required 
for each displacement encode condition to remove pre- 
existing phase shifts that are unrelated to displacement. 
Reference data are acquired using the same pulse se- 
quence, including displacement encode gradient pulses, 
but with the object maintained in state B. Note that all 
spatial encoding occurs from the third RF pulse and 
beyond. That is, the object is in one deformation state 
(state B) for both displacement and phase reference ac- 
quisitions during all spatial encoding segments of the 
sequence. Consequently, image registration or feature 
tracking algorithms (14) are not required to estimate dis- 
placement. Instead, local displacement is encoded di- 
rectly by local phase of a corrected dataset, Scor, given by, 

dcoA?) ~~ 
SA(f) SB(f) 

|Sfl(?)| 
■=\SA(f)\e 

j>(?) [8] 
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FIG. 3. Strain images calculated from first-order derivatives of the displacement images repre- 
sented in Fig. 2. Normal strains (a) en and (b) e22, and (c) shear strain s12 = e2-i reflect internal 
elastic properties and the externally applied deformation field. The plane strain state assumption 
and phantom incompressibility suggest e„ «* -e22 as is supported by the relatively featureless 
map of a-,., + e22 in (d). 

where SA and SB are the data acquired with the object 
initially in state A and state B, respectively. The un- 
wrapped phase of the corrected dataset and Eq. [7] pro- 
vides a local measure of displacement, U, by means of; 

<p(r) = $d • [fA - fB] = <J>d • U(r) [9] 

Most sources of phase error, such as static field inho- 
mogeneity, tend to be slowly varying functions of posi- 
tion. Therefore, the phase reference datasets may be ac- 
quired at relatively low spatial resolution to reduce scan 
time. 

METHODS 

Data Acquisition 

Elasticity imaging was performed on two phantoms. One 
was an 85-mm diameter cylindrical urethane rubber 
phantom containing two 8-mm cylinders of hard mate- 
rial. Previously, the ratio of Young's modulus between 
the inclusion and background material was measured 

10.5 ± 1.5 for 30% surface de- 
formation (19). In the present 
study, smaller surface defor- 
mation was applied, and con- 
sequently, the elasticity con- 
trast within this phantom 
should be less than the previ- 
ously measured ratio. Whereas 
the mechanical properties of 
the rubber phantom mimic 
soft tissue, the phantom had 
inherently poor NMR signal. A 
more tissue-equivalent phan- 
tom in terms of NMR and me- 
chanical properties was 
achieved by embedding a fresh 
canine dog kidney (<24 h ex 
vivo) into a 130 mm X 105 
mm X 75 mm block of 5% gel- 
atin. One hour before MRI, 10 
ml of 5% glutaraldehyde solu- 
tion was injected into kidney 
parenchyma to create a hard 
lesion(s). 

Phantoms were held se- 
curely in place under moder- 
ate preload pressure by two 
parallel acrylic plates. When 
pressure to the top plate was 
released, the phantom recoiled 
vertically an amount con- 
strained by physical stops. 
Maximum vertical displace- 
ment was <1.5 mm, which 
represented <2% differential 
between state "A" (greater de- 
formation) and state "B" (less 
deformation). Deformation 
was actuated pneumatically 
by an air-filled bladder on top 
of the phantom holder. Pneu- 

matic pressure was stepped by a remote solenoid valve 
with timing controlled by an external transistor transistor 
logic (TTL) gate circuit triggered by the pulse sequence. 

Displacement encoding gradient pulse duration, T = 
4.5 msec, and amplitude, Gd = 40 mT/m, provided a 
displacement sensitivity of <3>d = 15.33 ir/mm by means 
of Eq. [7]. The displacement encoding direction was al- 
ternated each pulse repetition between vertical and hor- 
izontal. For the urethane rubber phantom, acquisition 
parameters were TR = 1.3 s, TM = 350 msec, TE = 50 
msec, 128 X 128 matrix, four signal averages, 100 mm 
field of view, and 10-mm section thickness. An addi- 
tional 128 X 32 matrix acquisition was collected for 
phase-reference correction of vertical and horizontal en- 
coded data. The kidney phantom acquisition parameters 
were TR = 1 s, TM = 200 msec, TE = 76 msec, 256 X 256 
matrix, two signal averages, 150 mm field of view, and 
5-mm section thickness; with a 256 X 32 dataset acquired 
for phase correction. All experiments were performed on 
a 2 T 18-cm bore MRI system (Bmker, formerly GE NMR 
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FIG. 4. (a) Reconstructed map of Young's modulus for the urethane 
rubber phantom within a 63 x 50 mm region. The boundary of the 
region is defined to have a Young's modulus = 1. Relative Young's 
moduli for inclusions and background material are shown in (b). 

Instruments), using a 150-mm transmit/receive birdcage 
coil. 

Data Processing 

Time-domain data were transferred for off-line process- 
ing as follows. Phase reference datasets were zero-filled 
and 2D Fourier transformed to a 128 X 128 or 256 X 256 
matrix for phase correction by means of Eq. [7]. The 
resulting phase maps were used to estimate the spatial 
derivatives of the in-plane displacements necessary for 
elasticity reconstruction (6). Note phase unwrapping is 
not strictly required because only phase derivatives are 
used. Assuming the displacement fields are continuous, 
resulting in small differential displacement at any pixel 
compared with the total displacement, the differential 
displacement between two neighboring pixels was di- 
rectly computed from the angle of the complex multipli- 
cation of each pixel with the conjugate of the neighboring 
pixel, then scaled by l/<J>d. 

Solving Eq. [6] for unknown E (xl, x2) performed the 
elasticity reconstruction, i.e., reconstruction of the spa- 
tial distribution of elastic Young's modulus. As was 
noted previously, the unique solution of a boundary 
value problem (Eq. [5] or [6]) is determined by the bound- 

ary conditions. Therefore, a rectangular ROI was identi- 
fied within the imaging planes for both phantoms. For 
the phantom with two hard inclusions, the ROI was a 
region of 63 X 50 mm positioned approximately in the 
center of the phantom and included both inclusions. For 
the canine kidney phantom, the rectangular 94 X 51 mm 
ROI included the whole kidney cross-section. In both 
cases, the Young's modulus value along the ROI boundary 
was set to "one" resulting in reconstruction of relative 
Young's modulus. More detailed analysis and discussion of 
defining the ROI was considered previously (26). 

Elasticity reconstruction Eqs. [5] and [6] assume that 
spatial derivatives of the Young's modulus are continu- 
ous functions. To ensure continuous elasticity distribu- 
tion, the spatial derivatives of the displacement were 
low-pass filtered before elasticity reconstruction, result- 
ing in mild spatial resolution reduction. 

After defining the boundary conditions, Eq. [6] was 
discretized over the ROI with the same grid spacing as 
the MR images, where all spatial derivatives of the dis- 
placement/strain (i.e., coefficients in Eq. [6] for unknown 
Young's modulus distribution) were approximated .by 
finite differences. The linear set of equations resulting 
from discretization of Eq. [6] was solved iteratively, 
where the error in each step was estimated by averaging 
the left-hand side of Eq. [6] over the ROI using the current 
estimate of the elasticity distribution. From step to step, 
the Young's modulus distribution was updated based on 
the changes in the average error. 

RESULTS 

Magnitude and corrected phase images of the urethane 
rubber phantom are shown in Fig. 2. Given that $d = 
15.33 ir/mm, the number of 2TT phase bands in Fig. 2b 
indicates that the vertical excursion of the phantom top 
relative to the bottom was «1.4 mm; similarly, the rela- 
tive lateral displacement between left and right edges of 
the phantom was «0.8 mm (Fig. 2c). Reduced phase 
slopes in the regions of the hard inclusions are clearly 
visible on the phase images. Normal strain, eal and e22, 
and shear strain, e12 = e21, maps are illustrated in Figs. 
3a-3c, respectively. The observed contrast reversal be- 
tween ela and e22 is a result of phantom incompressibil- 
ity (like soft tissue), which yields ela = -e22 assuming 
negligible out-of-plane strain. Consequently, the sum (e^ 
+ e22) is relatively "flat" as shown at equivalent gray- 
scale settings in Fig. 3d. Also note, whereas the strain 
maps clearly exhibit object-specific detail (i.e., inclu- 
sions), features related to the applied external deforma- 
tion are quite conspicuous. This fact demonstrates why 
an elasticity reconstruction is needed. The Young's mod- 
ulus was reconstructed for a 63 X 50 mm region as 
presented in Fig. 4a. The boundary of the elasticity re- 
construction area was defined to have value "1." The 
relative elastic moduli for select regions are indicated in 
Fig. 4b and are consistent with the known elasticity of 
these materials (19). 

The canine kidney phantom is shown in Fig. 5 as 
magnitude (Fig. 5a), vertical (Fig. 5b), and horizontal 
(Fig. 5c) phase shift images. It is apparent from the ver- 
tical phase image (Fig. 5b) that although «1.24-mm rel- 
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FIG. 5. Stimulated echo images of canine kid- 
ney imbedded in gelatin, (a) Magnitude image, 
and (b) vertical and (c) horizontal displacement 
phase images in which <1.3 mm of vertical 
differential deformation and 15.33 77/mm dis- 
placement sensitivity were applied. 

ative displacement spans the full phantom, only «»0.26 
mm of it is within the kidney. Consequently, there is a 
high concentration of strain near the gel-kidney interface, 
as is clear on the strain maps (Fig. 6). As noted before, 
strain images exhibit contrast related to a combination of 
internal structure and the externally applied deforma- 
tion. Elasticity reconstruction, however, reduces the am- 
biguity and exhibits contrast dominated by internal elas- 
tic properties (Fig. 7a). It is also encouraging to note that 
whereas there was only moderate strain contrast within 
the kidney, elasticity contrast within renal parenchyma 
and central sinus are well distinguished on the Young's 
modulus image. Moreover, the site of glutaraldehyde in- 
jection (top-right quadrant of images) exhibited the high- 
est relative Young's modulus. Approximately 20 h after 
MRI, the kidney phantom was sliced at a plane corre- 
sponding to that studied by MRI. An optical image of this 
slice is shown in Fig. 7c. The freshly cut surface was pal- 
pated such that areas of relatively "hard" parenchyma 
could be noted. Arrows in Fig. 7c mark the most conspic- 
uous areas of hardness; the largest area corresponds to the 
high Young's modulus region in the upper-right quadrant 
of the kidney. 

DISCUSSION 

In this work we introduce a method to image and quan- 
tify internal elastic properties of an object by means of 
displacement-sensitive MRI with associated elasticity re- 
construction. The data acquisition segment employs gra- 
dient pulses to encode internal displacement by means of 

phase using a stimulated echo 
sequence. Internal displace- 
ments occur in response to an 
external deformation force 
synchronized to the acquisi- 
tion sequence. By timing con- 
trol, mechanical motion oc- 
curs while the relevant 
magnetization is longitudinal. 
The stimulated echo allows 
extension of the mechanical 
transition period to avoid po- 
tentially long-lived or ill-de- 
fined oscillations within the 
object such that an estimate of 
"static" displacement is 
achieved. Image registration or 
feature tracking (14) is not re- 
quired because the object is in 
one deformation state for all 
spatial encoding. 7\ relaxation 
and diffusion, which erode 
signal, ultimately set practical 
limits on this period. In these 
experiments, 200 to 350 msec 
was sufficient to allow static 
displacement measurement of 
rubber and gelatin/tissue 
phantoms using a simple air- 
bladder pneumatic system. 
This arrangement required the 

object to "passively" recoil during the TM period. 
Clearly, a faster deformation system can be built using 
external forces to "actively" deform the object during the 
stimulated echo mixing period. A shorter mixing time 
would then be used yielding a larger signal. 

To date, two approaches are present in elasticity im- 
aging: static reconstructive elasticity imaging (25, 26) and 
dynamic shear-wave elasticity imaging (20, 21, 23). In 
both, an external static or dynamic deformation is ap- 
plied while the resulting displacement/strain or propa- 
gating shear wave is detected using an imaging modality. 
In reconstructive elasticity imaging, the elasticity distri- 
bution must be reconstructed from static displacement 
and strain images. The ability to control the internal 
deformation pattern by varying the externally applied 
load, and high SNR displacement and strain estimates 
are the benefits of this method, although numerical re- 
construction algorithms are required. Wherein the mod- 
eled assumptions are valid, these algorithms exist. For 
more general applications, they must be refined further. 
In shear-wave elasticity imaging, local shear wavelength 
measurements allow direct and simple calculation of the 
shear elastic modulus. However, the interference of shear 
waves reflected from any elasticity inhomogeneities 
within the tissue, along with attenuation of shear waves, 
and conversion between shear and bulk waves are chal- 
lenges of this method. 

In these experiments a displacement sensitivity of $d 

= 15.33 ir/mm was achieved using moderate gradient 
factors. The ultimate quality of Young's modulus recon- 
struction depends on the induced phase shift, equal to 
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FIG. 6. Strain maps of the kidney phantom. 
Normal strains (a) e„ and (b) e22, and (c) shear 
strain s12 illustrate fairly high concentration of 
strain near the gel-kidney interface. 

the product of <l>d and local displacement. There is a 
limit, however, to the advantages gained by increasing 
phase shift. As spatial phase gradients become large, the 
phase distribution within a given voxel reduces signal 
amplitude. Assuming a linear phase distribution of range 
ß with a voxel, the signal modulation function is given by 
sinc(/3). For illustration, consider the vertical phase ex- 
cursion of 21 it observed across the 80-mm phantom in 
Fig. 2b. If the vertical phase excursion was evenly dis- 
tributed across voxels, the phase range within each 
0.78-mm voxel would be approximately 0.2 it. This im- 
plies a signal reduction factor of sinc(0.2 it) = 0.94 (i.e., 
signal loss of 6%). Clearly phase gradients can be more 
concentrated depending on object geometry, elastic het- 
erogeneity, and deformation geometry. This concentra- 
tion can lead to regions of significant signal loss in a 
manner analogous to flow dephasing in conventional 
MRI. Under such conditions, a smaller voxel size can 
(paradoxically) yield higher signal. In addition, inspec- 
tion for significant signal loss within the displacement- 
sensitive magnitude image can identify high-strain re- 
gions near soft/hard interfaces of a lesion. 

Water diffusion in the presence of displacement en- 
coding gradients is another source of signal attenuation. 
We estimate the signal reduction factor for freely diffus- 
ing water was ««0.24 in these experiments (i.e., 76% 
signal lost to diffusion effects). Diffusion effects are less- 
ened by reducing $d, or alternatively by shortening TM 
without affecting <3>d. In either case, diffusion effects are 
assumed  independent  of the  deformation  state,  and 

therefore are ignored in the 
elasticity reconstruction.  Be- 
cause     displacement    phase 
shift is the product of local 
displacement and 3>d, the se- 
lection of <£d is somewhat ar- 
bitrary as long as the applied 
differential deformation is ad- 
equate   for   elasticity   recon- 
struction. In these preliminary 
experiments,   the   differential 
deformation   was   <1.5   mm 
across the imaged object. For 
multi-step    acquisitions,    as 
done here, good reproducibil- 
ity of deformation is essential. 
Significant variation in defor- 
mation magnitude over the ac- 
quisition will lead to phase in- 
stability,  motion-like  artifact 
in base images, and errors that 
propagate through the elastic- 
ity reconstruction. It is a minor 
technical challenge to achieve 
relatively  high  displacement 
reproducibility in the defor- 
mation apparatus. Irreproduc- 
ible   motions   that   originate 
within   the    imaged    object, 
however, can be problematic 
and are analogous to undes- 
ired physiologic motion arti- 

facts in in vivo diffusion MRI. Fortunately, unlike diffu- 
sion and physiologic motions, the targeted motion in 
elasticity imaging is externally driven. As such, the dis- 
placement amplitude in response to an external differen- 
tial deformation can be significantly greater than irrepro- 
ducible or asynchronous displacement. For many in vivo 
applications including the breast, increasing the differential 
deformation severalfold relative to that applied in these 
phantom studies can reduce motion artifact. Gradient fac- 
tors and $d would be reduced accordingly, which would 
yield the added benefit of increased signal otherwise lost to 
diffusion effects. 

In practice, the definition of a closed contour of constant 
Young's modulus within the tissue can be a challenge. A 
hybrid procedure can be used as detailed elsewhere (26) 
and summarized as follows. The strain images are first 
processed to highlight boundaries between regions of dif- 
ferent elastic modulus. This procedure is based on the 
stress continuity property of continuous media such as 
tissue and can define regions of very small modulus varia- 
tions. After this boundary detection, closed contours of 
small elasticity variations are defined. The modulus along 
the contours is considered constant, thereby providing the 
boundary condition for complete reconstruction of the elas- 
ticity within the region of interest based on numerical so- 
lution of Eq. [6]. The elasticity distribution reconstructed in 
this way is the modulus relative to the modulus along the 
boundary. For breast elasticity imaging, it is anticipated 
that such a contour can be defined a priori within the 
subcutaneous fat that surrounds breast parenchyma. As- 
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FIG. 7. (a) Reconstructed Young's modulus image within a rectangular 94 x 51 mm region 
encompassing the kidney, (b) Relative Young's modulus for the scribed ROIs indicate high elastic 
modulus at the giutaraldehyde injection site in the upper-right quadrant of the kidney parenchyma, 
(c) The optical image of the kidney phantom approximately 20 h after MRI. Areas marked by arrows 
were noticeably harder as assessed by sense of manual touch. 

range to include deep lying le- 
sions. One application would 
be measurement of elasticity 
in breast tissue not accessible 
to manual palpation. In situ 
studies of Young's elastic 
modulus performed on sam- 
ples of breast tissue indicate 
that there is a large difference 
in elastic modulus between 
normal and pathologically 
transformed breast tissues. 
Others have analyzed the 
Young's modulus differences 
between different soft tissues 
and have found 1-2 orders of 
magnitude difference in 
Young's elastic moduli of a tis- 
sue in different physiologic 
states (1). If elastic changes 
predate formation of calcifica- 
tions, elasticity imaging could 
potentially increase detection 
and/or characterization of ma- 
lignant breast masses and thus 
be an important addition to ex- 
isting clinical diagnostic tools. 
Practical issues such as the rel- 
atively high cost of MRI may 
hinder use of this approach as a 
screening test. Nevertheless, ad- 
ditional work to define the role 
of this technique as a primary 
diagnostic tool or supplemental 
problem-solving modality in 
the management of soft-tissue 
disease is well justified. 

suming the Young's modulus of the fat boundary is con- 
stant, the relative Young's modulus image of parenchyma 
can be reconstructed. Alternatively, the breast can be sur- 
rounded by a high-signal cuff of known elastic modulus 
and imaged. An image of absolute Young's modulus can 
then be reconstructed if the boundary contour is defined 
within the cuff material. 

Some artifacts present in elasticity images (Figs. 4 and 7) 
are due to violation of the plane strain state approximation 
in these experiments. Indeed, if a plane strain state is not 
present, the reconstruction based on Eq. [6] will be in error. 
The elasticity reconstruction, however, does not have to be 
limited by a plane strain assumption if all 3D components 
of the displacement vector are available. Fortunately, such 
information would be available using 3D displacement en- 
coding within a volumetric imaging sequence. The issue of 
long scan time could be resolved by incorporating echo- 
planar imaging or fast-spin-echo segments for spatial en- 
coding. Correspondingly, an elasticity reconstruction based 
on Eq. [5] would be applied to produce volumetric elastic- 
ity maps. 

The long-range goal of quantitative elasticity imaging 
is to provide remote palpation thus expanding its limited 
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INTRODUCTION 
Elasticity MRI is the reconstruction of the elastic modulus in 
media using local displacement measurements of an object under 
static deformation [1], or directly from measurements of shear 
wave propagation [2]. Often it is assumed out of plane strain is 
approxiamtely zero. However, this plane strain state 
approximation does not hold in general. Estimates of the full 3D 
displacement and strain fields are required to accurately 
reconstruct elasticity. Here we describe such a method based on 
static displacement, stimulated-echo imaging [3]. As previously 
described, this approach encodes local displacement in response 
to an externally-applied deformation. A relatively long STE 
mixing time (200-300msec) allows ill-defined mechanical 
vibrations to dampen to where equilibrium conditions apply. The 
approach uses pulsed-field gradients (PFG) to encode 
displacement and is, in principle, readily extended to measure the 
full 3D displacement field. 

METHODS 

Features of the displacement-encoding STE technique have been 
described previously [3] but are summarized here.   The initial 
spatial   configuration   of  an   elastic   object   is   encoded ^by 
application of a PFG between the first two non-selective 90 rf 
pulses.  An externally-applied deformation force transforms the 
object to a new configuration during the mixing time, TM, of the 
STE. The differential surface deformation can be relatively 
subtle (<5mm) and is chosen to complement the applied PFG 
area   which   defines   displacement   sensitivity   (~3-16rc/mm). 
Mixing time must be sufficient for the object to come to rest by 
the 3rd slice/slab-selective 90° rf pulse.  A second PFG prior to 
signal readout yields a phase directly proportional to local 
displacement between initial and final object configuration. To 
achieve 3D, a fast-spin-echo train was appended to the STE with 
an additional centric-ordered z-slab phase-encode echo train (8- 
16 ETL on kz). Conventional phase-encoding was used for the 
remaining spatial dimension.    Acquisition of data sets with 
inteleaved PFG gradients applied along X, Y, and Z axes: 
TR=1"; 256 x 128 x 8; 4ave; 3.87i/mm sensitivity.    Phase 
correction was done via a sparse reference dataset (32 ky lines). 

A tissue-mimicking block phantom containing ramped bars of 
harder material (= 6x Young's modulus) was held between two 
pneumatic deformation plates. These parallel plates released a 
5mm differential surface deformation during TM=270ms. 

RESULTS 
Images of the phantom shown in figure 1 are (a) magnitude and 
phase (i.e. displacement) images along (b) X, (c) Y and (d) Z 
directions. Corresponding strain images illustrated in figure 2 
are (a) e„ , (b) e^ , (c) C,y, and (d) (£„-«„,). Note, (£„+%) 
should be zero if the plane-strain condition holds. Apparent 
structure in figure 2(d) indicates there is out of plane strain. 

DISCUSSION 
Extension of elasticity MRI to 3D is essential to implement a 
general elasticity reconstruction. 3D elasticity reconstruction 
algorithms have been described [1], but have not been 
implemented due to lack of suitable 3D data acquisition schemes. 
The method presented here represents an initial step toward that 
end. 

(c)e: xy (d)   exx+Eyy 
Figure 2 
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Abstract. This article presents a method for measuring three-dimensional mechanical 
displacement and strain fields using stimulated echo MRI. Additional gradient pulses encode 
internal displacements in response to an externally applied deformation. By limiting the mechanical 
transition to the stimulated echo mixing time, a more accurate static displacement measurement 
is obtained. A three-dimensional elasticity reconstruction within a region of interest having a 
uniform shear modulus along its boundary is performed by numerically solving discretired elasticity 
equilibrium equations. Data acquisition, strain measurements and reconstruction were performed 
using a silicone gel phantom containing an inclusion of known elastic properties. A comparison 
between two-dimensional and three-dimensional reconstructions from simulated and experimental 
displacement data shows higher accuracy from the three-dimensional reconstruction. The long- 
term objective of this work is to provide a method for remotely palpating and elastically quantitating 
manually inaccessible tissues. 

1. Introduction 

1.1. Motivation 

Palpation has long been used by physicians as a means to detect disease. The underlying basis 
for this detection is the presence of 'hard' tissue. Evidence suggests that Young's (or shear) 
elastic moduli may differ by orders of magnitude within soft tissues in various physiological 
states (Sarvazyan et al 1995, Skovoroda et al 1995b). In addition, manual self-examination 
is the first diagnostic line of defence against both breast (Hill et al 1988, Newcomb et al 
1991) and testicular cancers. With breast cancer, manual detection of a new mass often merits 
excisional biopsy, even if uncorroborated by other tests, as nodule hardness raises suspicion 
of malignancy (Foster 1996). Palpation of superficial lymph nodes and abdominal organs is 
also routinely performed. Although the touch of a skilled physician is a powerful diagnostic 
tool, palpation sensitivity is relatively poor within deep, dense or heterogeneous tissue. Thus, 
most manually detected lesions are either superficial, relatively large or both. 
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1.2. Elasticity imaging 

Currently, many scientists are working on extending the range and sensitivity of palpation by 
using various methods to image tissue elasticity. The basic method for creating an elasticity 
map involves two steps. First, the internal displacements within tissue under an applied 
mechanical stress are measured. The (usually externally) applied deformation may be either 
dynamic or static. Then, from these data, a reconstruction of regional variations in tissue 
elasticity is performed, either directly or after calculating internal strains. Although both 
internal displacements and strains are related to the elastic properties of tissue, they are also 
strongly affected by geometry. Thus, some form of reconstruction is necessary to uniquely 
determine the elasticity distribution. 

To date, two major medical imaging modalities have been used to measure tissue 
displacement: ultrasound and magnetic resonance imaging (MRI). The phase sensitivity of 
these methods lends itself to tracking tissue motion. Most elasticity imaging has been carried 
out using ultrasonically measured tissue displacements. These data have been obtained by 
tracking specular reflections (Dickinson and Hill 1982, Tristam etal 1986,1988), by Doppler 
techniques (Lerner et al 1990, Parker et al 1990, Parker and Lerner 1992), by cross-correlation 
of acoustic echoes (Ophir et al 1991, Garra et al 1997) and by speckle tracking (Adler et al 
1989,0'Donnell et al 1994, Emelianov et al 1995). Other efforts employ MRI for measuring 
tissue motion, as discussed below. 

1.3. MRI measurement of tissue displacement 

In the past, myocardial motion and strain have been measured using spatial magnetization 
tagging (Axel and Dougherty 1989, Zerhouni etal 1988), and phase-based velocity encoding 
(Pelc et al 1995). More recently, methods have been devised to measure tissue displacement 
specifically for elasticity imaging. These measurements can be separated based upon the nature 
of the applied deformation. 

1.3.1. Dynamic deformation. With these methods, a periodic excitation is applied to the 
tissue near the region of interest, and the entire system may be allowed to reach steady state. 
One or several 'snapshots' of mechanical wave propagation within the object are produced 
by controlling the relative phase between the mechanical excitation and the motion-encoding 
gradients. The local displacement information in these images is then used as an input for 
an elasticity reconstruction algorithm. Initial experiments used a shear excitation, and the 
elasticity reconstruction was performed assuming the recorded image contained only shear 
waves (Muthupillai et al 1995). If only shear waves are present in a purely elastic medium, 
local elastic modulus variations are determined via the relation p, = v2X2p, where p. is 
the local shear modulus, v is the frequency of the applied deformation, k is the measured 
local strain-wave wavelength and p is the density of the medium. Although attractive in 
its simplicity, this approach is compromised by frequency-dependent viscoelastic effects and 
strain-wave wavelength, interference from reflections off of elastic inhomogeneities and the 
possible presence of longitudinal mechanical waves in the medium. Despite these limitations, 
this method has been applied in vivo (Dresner et al 1999, Lawrence et al 1999). Recently, a 
more general elasticity reconstruction from a series of 'instantaneous' steady state mechanical 
wave images has been developed (Sinkus et al 1999, 2000). This and another technique 
(Van Houten et al 1999, Weaver et al 1999) rely on a more complete viscoelastic tissue model 
than that presented in Muthupillai etal (1995). 
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1.3.2. Static deformation. Another method of producing an internal strain field in an object is 
to deform it and allow the material to relax to equilibrium before measuring the displacement 
field. The displacement field has been accessed using spatial magnetization tagging, but this 
method suffers from spatial resolution limited by the tagged grid size and typically measures 
only two-dimensional (2D) motion (Fowlkes et al 1995). A quasistatic method using bipolar 
gradient phase encoding of 2D motion is presented by Plewes et al (1995, 1996). Stimulated 
echo MRI has also been used to measure 2D displacement fields (Reese et al 1996), from 
which elasticity images have been reconstructed (Chenevert et al 1998). This method has 
been extended to study myocardial motion (Aletras et al 1999b). With these techniques, 
viscoelastic effects are generally ignored, making the reconstruction more straightforward. 
Care must be taken, however, to justify the use of a static model, especially when repeated 
deformations are needed to acquire a complete data set. 

In general, MRI has several advantages over ultrasound with respect to elasticity imaging. 
Although ultrasound accurately measures motion along the beam axis, lateral motion is 
measured with a resolution given by the depth-dependent beam width. Out-of-plane motion is 
generally not considered, given the problems with three-dimensional (3D) image registration 
in ultrasound. These restrictions compromise the quality of displacement data available and 
constrain the type of model used to produce an elasticity image. Ultrasound does, though, 
offer the advantages of low-cost and real-time imaging. MRI, on the other hand, gives one 
the ability to measure 3D displacements within an object, and does this at a higher overall 
resolution than clinical ultrasound. 

In this paper we present a method for encoding the full 3D displacement field within 
an object undergoing an externally applied static (or quasistatic) deformation. Local strain 
estimates are calculated from the measured displacements, and the strain tensor is used to 
numerically solve differential elasticity equilibrium equations, ultimately producing a 3D 
elasticity image. 

2. Reconstructive elasticity imaging from static displacement fields 

The goal of elasticity imaging is to produce a map of the tissue elastic modulus in a region 
of interest using available measurements of displacement components. In this work, the 
reconstruction approach taken is based upon a model of linear, elastic, isotropic media 
(Skovoroda et al 1995a, 1999). The central equations and concepts are covered briefly here. 
A more detailed discussion can be found in the references mentioned. Note that some tissues, 
such as skeletal muscle, exhibit anisotropic elasticity (Fung 1993). For anisotropic media, a 
more generalized reconstruction method is needed. 

2.1. Linear elasticity and reconstruction 

In linear elasticity, the components of the strain (s,;) and stress (<r,;) tensors in a medium 
undergoing small deformations are given by 

1 fduj     duj\ e" = 2U;+^J (1) 

ffij = pSjj + 2/MEij (2) 

where «,• is a component of the displacement vector U = (u\,U2,ui)m Cartesian coordinates 
r = (x), xz, JC3), p is the product XV • U for compressible media or the static internal pressure 
for incompressible media, 5,;- is the Kronecker delta function, X and p. are the Lame coefficients 
and p = p(r) is the shear elastic modulus. 



1636 DDSteeleetal 

A medium undergoing static deformation obeys the equilibrium condition: 

£^i+/;=0 i = l,2.3 (3) 
7=1 dxJ 

where /; is the body force per unit volume acting in the xt direction. In addition, if a medium 
is incompressible, volume conservation leads to the following relation: 

du\      duo      3«3 
V-C/ = £11+e22 + e33 = T-L + T-£ + v^=0. (4) 

3*1      9^2     9*3 
Although not necessary in the development that follows, soft tissue is approximately 
incompressible (Sarvazyan et al 1995). 

Using equations (1) and (2) in (3), the unknown p(r) can be eliminated to yield a set 
of differential equations depending only on U, first- and higher-order spatial derivatives of 
U, and the elasticity distribution, ß(r). This set of equations is then numerically solved to 
estimate the unknown shear elasticity distribution. 

2.2. Importance of three-dimensional reconstruction methods 

Several approaches have been proposed to estimate tissue elasticity from the experimentally 
measured spatial distribution of internal displacements within an object. The simplest method 
is a one-dimensional (ID) estimation of normalized tissue elasticity, expressed as 

*i = 1/e (5) 

where e is longitudinal strain (Ophir et al 1991, Garra et al 1997). Indeed, a loaded object 
generally exhibits low longitudinal strain in relatively hard regions and high longitudinal strain 
in relatively soft regions. 

A 2D elasticity reconstruction, based on a plane-strain assumption and all necessary in- 
plane strain components, provides a more accurate representation of the object's elasticity 
(Skovoroda et al 1995a, 1999). The theory of reconstructing clearly bounded and spatially 
distributed tissue inhomogeneities has been demonstrated by Skovoroda etal (1995a) as well. 
However, inaccurate estimates may result by using either a ID or 2D reconstruction of a 3D 
object. 

To demonstrate these inaccuracies, consider a spherical inclusion of radius R in a 
uniaxially, uniformly loaded, infinite, homogeneous medium (Goudier 1933).    For an 
incompressible medium, the distribution of longitudinal strain along the x-$ axis (orthogonal 
to the applied deformation), is (Skovoroda et al 1994): 

5ß 
3 + 2KO 

*o - 1 
0  1 + <0-<0 

x3 < R 

(6) 
JC3 > R. 

2(3 + 2*o) 
Here ß is the magnitude of the applied strain and *o = ß/ßo is the ratio of the inclusion to 
background shear moduli. Normalizing (6) by ß, which corresponds to the axial strain in the 
tissue far from the inclusion, and substituting into (5) we obtain 

3 + 2/co ,„ 
—-— *3 < R 

*'=,<3H3+2*°+^[5(£)ä-9OT'  ■>**■     <7) 
Note that K\ /KQ = (3 + 2*o)/5*o within the inclusion. That is, for a very hard inclusion 
(*o large), the relative modulus obtained from a ID reconstruction will only be 40% of 
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Figure 1. Simulated elasticity distributions, K(X] , X2), and corresponding 2D, K^(X\, X2) and 3D, 
*3(*i. -*2)> elasticity reconstructions from the X}/R s» 1.05, (a)-(d), and xj/R « 0.95, (e)-(A), 
planes of a phantom with a single hard, spherical inclusion of radius R. Also presented are the 
central vertical profiles of each distribution, where ( ) is K, ( ) is «2, and (----) is K3. 
All are presented on a log scale where black corresponds to a relative shear modulus of 0.5 and 
white to 4.5. The background has a relative shear modulus of 1, and the inclusion, 4. 

its actual value. On the other hand, for a soft inclusion (KQ small), the relative modulus 
estimate will approach |, no matter how much softer the inclusion is than the background. 
Obviously, the inaccuracy of a ID elasticity estimation may not be acceptable for many 
applications. 

Now consider a 2D reconstruction. Figures 1(a) and (e) show the exact relative elasticity 
distribution, K(X\, X2), for two infinitesimal planes in our pedagogic phantom with KQ = 4. 
Figure 1(a) presents K for X3/R « 1.05, that is, outside of the inclusion, while figure 1(e) is 
the x-i/R « 0.95 plane. The corresponding relative 2D reconstructions, K2(*i, ^2)» are shown 
in figures 1(b) and (/"). The reconstructions were performed using the algorithm presented by 
Skovoroda et al (1999). For comparison with experimental results (see section 5), an analytic 
model was used to generate displacement data which were sampled with the X2 resolution of the 
experimental displacement encoded data discussed in section 4.2. The strains used as input for 
the reconstructions were calculated as described in section 4.3, and the reconstructions were 
performed over a region of interest identical to the one discussed in that same section. The 
positions of the two reconstructed planes were selected to approximately correspond to the 
experimental planes considered in section 5. As evidenced here, neglecting out-of-plane strain 
components in the reconstruction produces geometrical distortions in the elasticity image. 
Specifically, the spherical inclusion is reconstructed as a prolate spheroid. The inaccuracy 
of a plane-strain based reconstruction is small near the central plane, and increases with the 
distance between the imaging plane and the centre of the inclusion. Far from the inclusion, a 
2D reconstruction would again be accurate. 
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It is clear that a ID or 2D reconstruction may lead to significant inaccuracies in tissue 
elasticity estimations, especially when complicated in vivo geometries influence displacement 
and strain measurements. This points to the need for an accurate 3D elasticity reconstruction. 
A general unknown shear elasticity distribution, fi{x\,X2,x{), must satisfy the equation 
(Skovorodaefa/ 1995a, 1999): 

92(^ei2) _ 32(^£i2) + 9V(g22-en)] + 9Ve23) _ 820*e13) = Q      g 

dx\ 8x\ dx\dx2 dx\dx$ 8x28x3 

Thus, in order to compute all the necessary components of the strain tensor, s,;-, in (8), all of the 
displacement components («1, «2. "3) rnust be measured as a function of spatial coordinates 
(x\, X2, x$). This requirement exists in both the differential-based 3D reconstruction (8), as 
well as in the more stable integral based 3D approach (Skovoroda et al 1999). 

The 3D elasticity reconstructions from the two planes previously discussed are shown in 
figures 1(c) and (g). The reconstruction was performed as discussed in section 4.3. Although 
not perfect due to the relatively large X3 step size, the 3D reconstructions clearly exhibit 
fewer geometric distortions than the 2D estimates. This is particularly well illustrated by 
the central vertical profiles through the analytic, 2D, and 3D shear distributions presented 
in figures \{d) and (h). In the X3/R « 1.05 plane, the 2D reconstruction estimates that an 
inclusion is present, when indeed it is not, while the 3D reconstruction shows little evidence 
of the presence of an inclusion. The estimate of the extent of the inclusion in the xj/R « 0.95 
plane is also improved over the 2D estimate. As with the 2D reconstructions, the strain data 
and reconstruction parameters used for the 3D reconstruction were identical to those of the 
experimental parameters described in sections 4.2,4.3 and 5. 

3. Static displacement measurement via stimulated echo MRI 

Static displacement measurements for elasticity imaging avoid several confounding factors that 
may be present if dynamic displacement measurements are used. Since shear wave propagation 
speed in soft tissue is approximately 1-20 m s-1, shear waves launched into a medium by an 
applied deformation may require tens of milliseconds to traverse an object approximately 
100 mm in size. Reflected waves may take much longer to dampen. To appropriately measure 
an object's internal static displacements, the object must be in mechanical equilibrium—that 
is, it must satisfy (3)—during both the pre- and post-deformation measurements. A stimulated 
echo MRI sequence using displacement encoding gradient pulses is employed to achieve 
this (Reese et al 1996, Chenevert et al 1998). Figure 2 presents a schematic of this pulse 
sequence. The mechanical transition from the pre- to post-deformational states occurs during 
the stimulated echo mixing time, TM. Because the relevant magnetization is longitudinal 
during TM, it is unaffected by the object's motion during the mechanical transition period. 
This allows a more accurate measurement of static internal displacement. Additionally, precise 
synchronization of the motion and applied gradients is not necessary as long as the mechanical 
deformation begins after the second radio-frequency pulse, and internal motion stops before the 
third. A long delay in the echo time, TE, could also be used to let the object reach equilibrium, 
but this would likely lead to prohibitive signal loss from T2 decay. 

Local displacements are encoded in the magnetization's phase via pulsed-field gradients. 
The displacement sensitivity, in radians/distance, of the sequence is 

*d = y /   Gi(t)dt = yGär (9) 
Jo 

where y is the gyromagnetic ratio of the proton, Gd(0 is the encoding gradient waveform and 
r is the duration of the encoding gradient. However, for accurate displacement measurements, 
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Figure 2. Displacement encoding, stimulated echo pulse sequence waveforms. RF = radio 
frequency, Gj = displacement encoding gradient, and Gro = read-out (.11), Gpc = phase-encode 
(xi) and Gsi = slice fe) directed gradient waveforms. TM is the mixing time, 7E is the echo time 
and T is the duration of the displacement encoding gradient. Note that the displacement encoding 
gradient may be applied to any of the directional waveforms. 

phaseshifts unrelated to the applied deformation must be removed. This is done by acquiring 
a phase reference data set using the same pulse sequence, but with the object maintained in 
the post-deformational state for the entire experiment. Note that all spatial encoding takes 
place with the object in the post-deformational state for both the displacement encoded and 
reference acquisitions. Therefore no image registration or tracking algorithms are required to 
use the reference data, ST, to correct the displacement encoded data, Sd- The corrected data 
set, 5C, is then: 

Se(r)=Si{^r ^\Sä(r)\e^\ (10) 
\St(r)\ 

Most sources of phase error, such as static field inhomogeneities, tend to be slowly varying 
functions of position. Thus the phase reference data may be acquired at relatively low spatial 
resolution to reduce scan time. 

The unwrapped phase of (10) is related to the local displacement vector, U, via 

0(r) = *d • Ar = $d • U(r) (11) 

where Ar is the local displacement from pre- to post-deformational states. The displacement 
sensitivity, 4>d, may be made sensitive to motion in an arbitrary direction based upon 
appropriate combination of displacement encoding gradients in the read-out, phase-encode and 
slice directions. Hence, this pulse sequence readily extends to acquiring three-dimensional 
displacement data. 

4. Methods 

4.1. Phantom 

Elasticity imaging experiments were performed on a phantom with a spherical hard inclusion. 
Semicosil 921 silicone gel (Wacker Silicones Corporation, Adrian, MI) was used to construct 
a phantom qualitatively simulating the mechanical properties of soft tissue. The Semicosil 921 
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consists of two components, A and B, wherein different ratios of these components are used 
to vary the mechanical properties of the gel. A tissue-mimicking phantom was constructed 
in several steps. First, background material was prepared by thoroughly mixing components 
A and B in a 1:1 ratio, and then pouring the mixture into a 154 mm by 80 mm rectangular 
mould. The mixture was degassed and cured for 24 h at room temperature to produce a 22 mm 
thick layer. Then a 25 mm diameter hard sphere was prepared from a 1:2.5 mixture of A and 
B and was placed on top of the layer in the middle of the mould. Finally, another batch of 
background material (1:1 ratio) was poured into the mould resulting in a 64 mm by 80 mm by 
154 mm phantom with a single, hard, spherical inclusion roughly in the centre. At the same 
time, three samples of each batch were taken to independently assess the elasticity contrast 
between the inclusion and surrounding materials. These measurements were performed using 
the force-deformation system described in Erkamp etal (1998), and showed that the inclusion 
was four times harder than the background, and that both background materials were elastically 
equivalent. 

4.2. Data acquisition 

To provide repeatable deformation, the phantom was placed under moderate pre-load pressure 
between two acrylic plates in a pneumatically driven device. Air-filled neoprene boots in a 
push-push configuration provided the necessary force to the top plate to keep the phantom in 
this pre-load state, and aided the vertical recoil of the phantom to the post-deformation state. 
Pneumatic pressure was delivered via two solenoid valves whose timing was controlled by 
an external transistor-transistor logic circuit triggered by the pulse sequence. Quick-release 
valves aided in depressurizing the boots. Both the pre-load and recoil positions of the top 
acrylic plate were set by adjustable stops; the bottom plate's position was fixed. The applied 
vertical deformation was approximately 2.4 mm, or about 6% strain, between the pre-transition 
(greater deformation) and post-transition (less deformation) states. 

During data acquisition, the displacement encoding gradient pulse duration, r, was 1.5 ms, 
and the amplitude, Gj, was 40 mT m_1 in the read-out (x\) and phase-encode fe) directions, 
and 60 mT m_I in the slice (xy) direction. Here, the X3 direction was along the bore's axis, 
and the x\ and x2 directions were perpendicular to X3 in the horizontal and vertical directions 
respectively. By (9), the displacement sensitivity, $d, was approximately 5.11 it mm-1 in the 
x\ and X2 directions, and about 7.66 it mm-1 in the X3 direction. The displacement encoding 
direction was cycled each pulse repetition between the x\, x2 and X3 directions. The pulse- 
to-pulse repetition time was approximately 0.98 s, the mixing time (TM) was 270 ms, and the 
echo time (7"E) was 45 ms. Two averages were taken of a 256 x 256 x 32 matrix covering an 
80 mm by 110 mm by 48 mm field of view. The phase reference data were collected using 
a 256 x 32 x 32 matrix while keeping all other parameters the same. All experiments were 
performed on a 2 T, 18 cm bore MRI system (Bruker, formerly GE NMR Instruments) using 
a 150 mm transmit/receive birdcage coil. 

4.3. Data processing 

All time-domain data were transferred off-line for processing. For phase correction, the phase 
reference data set was zero-filled to a 256 x 256 x 32 matrix. Then this and the displacement 
encoded data were 3D Fourier transformed and corrected as in (10). The resulting phase maps 
were then used to estimate the spatial derivatives to compute the strains, via (1), necessary 
for the elasticity reconstruction. Phase unwrapping of the displacement data was not strictly 
required since only phase derivatives were used in the strain calculations. The displacement 
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derivative at the ith point in the j direction was computed from the angle of the complex 
multiplication of the i + 1th point with the conjugate of the j — 1th point, then scaling by 
1/2<I>J> where <t>J

d is the magnitude of the displacement sensitivity in the j direction. For 
convenience, the strain data were decimated to the xi step size in each ;c3 plane in order to 
have equal resolution in both the x\ and xj directions. The strain images were then median 
filtered with a 5 x 5 window, resulting in a slight decrease in spatial resolution. These strains 
were used as input for the elasticity reconstruction. 

The 3D elasticity reconstruction was performed using the least-squares error minimization 
algorithm discussed in Skovoroda etal (1999), with a second-order, one-sided finite derivative 
approximation in the x^ direction. The reconstruction of ß(r) is a boundary value problem, 
therefore a unique solution is obtained only with boundary conditions. So a square 35 mm by 
35 mm region of interest, which contained the inclusion in several x?, planes, was identified 
in the x\ and X2 directions. Along the boundaries of these regions, and in the two X3 planes 
furthest from the centre of the inclusion (which did not contain the inclusion), the value of the 
shear modulus was set to 1, resulting in a relative shear modulus reconstruction. 

5. Results 

Representative magnitude and corrected phase images of the Semicosil phantom for a 1.5 mm 
thick plane centred about xi = 0.75 mm, orx^/R ss 0.05, are shown in figure 3. Knowing that 
<J>d «5.11 it mm-1 in the x\ and X2 directions, the number of In phase wraps in figure 3(c) 

(a)S1(x1,x2) (b)4>1(x1,x2) 

(c) <t>2(xrx2 (d)<))3(x1,x2) 

Figure 3. Representative magnitude and phase images from the xj/R w 0.05 plane of the 3D 
displacement encoded data set from a phantom with a single, hard, spherical inclusion. Si, (a), is 
the magnitude of the x\ -displacement encoded data, and (pi, (fe)-(d), are the phase images of the 
X{ -displacement encoded data. 
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(a)e22(x1,x2) (b)E12(xrx2) (cje^x,.^) (d) E11+e22+e33 

(f)e12(xrx2) (9)ii3(*r*2) (h)e11+E22+E33 

Figure 4. Representative strain images from the X3/R & 1.05, (a)-(d), and X3/R » 0.95, (e)-(h), 
planes from the 3D displacement encoded data of the phantom with a single, hard, spherical 
inclusion. One normal strain, £22, the in-plane shear strain, £12 = £21, one through-plane shear 
strain, £13 =£31, and the trace of the strain tensor, e 11 + £22 + £33, are presented for each plane. The 
lack of features in (d) and (ft) indicate that the phantom is nearly incompressible. Linear scales for 
each image are, from black to white: (a), (e): [-6%, 0%]; (b), (f): [-2.5%, 2.5%]; (c), (d), (g), 
(ft): [-1.6%, 1.6%]. 

indicates a vertical deformation of approximately 2.3 mm, and those in figure 3(b) a horizontal 
deformation of about 2.0 mm. Reduced phase slope in the region of the hard inclusion is 
clearly visible in these figures as well. Due to the central location of this plane, there is little 
feature in fa (part (d)). 

Figure 4 shows representative strain maps from the planes centred around X3 = 15.75 mm 
and*3 = 14.25 mm. Due to the loaded state of the phantom during imaging, the sphere became 
prolate, therefore these planes correspond to the X3/R « 1.05 and x^/R « 0.95 locations 
respectively. One normal strain, 622 (parts (a) and (e)), the in-plane shear strain, ei2 = £21 
(parts (b) and (f)), and one through-plane shear strain, sn = 631 (parts (c) and (g)), are shown 
for each plane. These components are all required to perform the elasticity reconstruction in 
(8). Note that the presence of through-plane strains in (8) necessitates measurement of the full 
3D displacement field. In addition, although elasticity-specific details are seen in the strain 
maps, features related to geometry and the applied deformation are also clearly present. This 
points to the need for a proper elasticity reconstruction to disentangle these factors. Also 
shown is the trace of the strain tensor, £11+622 + 633» for each plane (parts (d) and (h)). The 
relative lack of features in the trace of the strain tensor indicates that the phantom is nearly 
incompressible (like soft tissue). 

Magnitude images of the 35 mm by 35 mm regions of interest in the same two planes, along 
with two different shear modulus reconstructions of these planes, are presented in figure 5. 
In the magnitude images, the hard inclusion is clearly present in the x^/R « 0.95 plane, 
while it is essentially absent in the X3/R « 1.05 plane. Note that the magnitude images only 
convey geometric information. Figures 5(b) and (f) show 2D elasticity reconstructions of these 
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Figure 5. x\-displacement encoded magnitude images, St(xi,X2), and corresponding 2D, 
K2(*i.*2). and 3D, K^(X\,X2) elasticity reconstructions from the X3/R ss 1.05, (a)-(d), and 
X3/R «s 0.95, (e)-(h), planes of a phantom with a single hard, spherical inclusion. Also presented 
are the central vertical profiles of each distribution, where ( ) is KI, and (----) is 1C3. All 
are presented on a log scale where black corresponds to a relative shear modulus of 0.5 and white 
to 4.5. The background has a relative shear modulus of 1, and the inclusion, 4, from independent 
measurements. For geometi 
and normalized) as ( ). 

two planes, while figures 5(c) and (g) show the corresponding 3D elasticity reconstructions. 
As in figure 1, one sees an overestimate of the 3D spatial extent of the inclusion in the 
2D reconstructions. This overestimate is corrected with the 3D reconstruction. For ease 
of comparison, vertical profiles through the centre of the inclusion from the 2D and 3D 
reconstructions are presented, along with plots of Sj~' for geometric reference, in figures 5(d) 
and (h). 

6. Discussion 

The stimulated echo sequence presented here phase encodes internal displacements using 
gradient pulses. An externally applied deformation, synchronized with the pulse sequence, 
produces an internal displacement field. This deformation is actively driven with a pneumatic 
device, and the mechanical transition from pre- to post-deformation occurs during the sequence 
mixing time, Tu, while the relevant magnetization is longitudinal. Because longitudinal 
magnetization decays only as T\, the mechanical transition period may be extended to allow 
potentially long-lived or ill-defined motions within the object to dampen. With a sufficiently 
long TM, the encoded displacement will be approximately static. However, signal loss due to 
T\ relaxation sets a practical limit on the length of Tu- To determine an appropriate mixing 
time, a series of 2D displacement encoded images was taken, varying TM from 50-750 ms. 
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From the phase maps of these data, one could see that the top acrylic plate of the deformation 
device completed its excursion in under 200 ms, and the internal motion in the phantom 
became negligible by 250 ms. To ensure that (3) was reasonably satisfied, a 270 ms mixing 
time was chosen for subsequent data collection. Although the deformation device used here 
provides adequate transition speed, an even faster device would allow a shorter 7M. yielding 
more signal. While absent in the phantom used here, water diffusion in the presence of 
displacement encoding gradients will be another source of signal loss in in vivo experiments. 
This loss can be mitigated by reducing the displacement sensitivity, <J>j, or by shortening T^. 

The quality of the shear modulus reconstruction ultimately depends on the local phase, 
as in (11), induced by the encoding gradients and the local displacement. More specifically, 
the quality depends on the spatial derivatives of the encoded phase. A study of the effects 
of displacement sensitivity, applied deformation, relative hardness and diffusion loss on the 
signal-to-noise ratio (SNR) of the elasticity reconstruction has been presented in Steele et al 
(1999). This study demonstrates that increased intra-voxel phase wrap will increase the 
reconstruction SNR, up to a 7r intra-voxel phase distribution. Note that the reconstruction 
SNR increases despite a reduction in the nuclear magnetic resonance (NMR) signal from the 
object. Assuming a linear phase distribution of 6 radians across a voxel, the signal modulation 
from that voxel will be |sinc(0/2)| = | sin(0/2)(0/2)_1|. However, the phase gradients (that 
is, the displacement derivatives) will be maximized without aliasing as the intra-voxel phase 
wrap approaches it, and this is the signal that is important in the reconstruction. A jr phase 
wrap may be achieved through many combinations of applied deformation and displacement 
sensitivity. However, increasing <I>d will increase signal loss due to diffusion, as discussed 
above. Hence, a smaller displacement sensitivity and increased deformation would appear to 
be optimal. Again, there is a trade-off: as deformation increases, the model of linear elasticity 
discussed in section 2.1 will become less and less valid. Elasticity reconstructions from finite 
displacement fields have been demonstrated in Skovoroda et al (1999), but these are obviously 
more computationally intensive than the linear reconstructions used here. In relation to the data 
presented here, the number of In phase bands across the phantom in figure 3 clearly indicate 
that these data were acquired with a suboptimal displacement sensitivity/applied deformation 
combination. Because neither the encoding nor the deformation used here were extreme, the 
elasticity reconstruction's SNR should be improved merely by optimizing the intra-voxel phase 
wrap. 

Relative hardness, object geometry and deformation geometry also affect the displacement 
phase gradients. In general, the phase gradients increase near soft/hard interfaces and are higher 
in relatively soft regions of tissue. Excessive phase wrap (i.e. strain) can lead to regions of 
significant signal loss in a manner analogous to flow dephasing in conventional MRI. The 
resulting reconstructions would suffer from this signal loss. Hence, the applied deformation 
and displacement sensitivity should be optimized for the regions of highest strain in an object. 
Increased intra-voxel phase wrap in regions of lower strain may be obtained by integrating the 
signal from several voxels; in essence, applying an adaptive voxel size based upon local phase 
gradients. This increase in signal would come at the expense of spatial resolution. Additionally, 
signal loss due to intra-voxel phase wrap in the displacement encoded magnitude images may 
be useful for identifying regions of high strain in tissue. 

Another factor affecting the displacement signal is the reproducibility of the applied 
deformation. For multistep acquisitions, such as those presented here, good deformation 
reproducibility is essential. Variations in the applied deformation will lead to phase instability, 
motion-like artefacts, and errors that will propagate through the elasticity reconstruction. 
Adequate reproducibility has been achieved with the current deformation system. However, 
irreproducible or asynchronous motions within the imaged object may be problematic. 
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These would include physiological cardiac and respiratory motion present in in vivo 
experiments. In some ways, the problems associated with undesired motion would be similar 
to those encountered in diffusion MRI. Because the applied deformation is external, though, 
the displacement encoding can be tailored to it, reducing the effect of undesired motion on the 
displacement data. Further complications arise because phase derivatives of the displacement 
data, approximated by finite differences, are required for reconstruction. In addition to 
choosing an appropriate deformation/encoding combination, methods should be devised to 
reduce the effects of undesired motion on the displacement derivatives. 

Clearly several advantages justify performing a 3D elasticity reconstruction rather than a 
2D reconstruction. As illustrated in figures 1 and 5, and as discussed in sections 2.2 and 5, a 
3D reconstruction provides a more accurate representation of the elasticity distribution than 
a 2D reconstruction in the simple phantom used here. Complicated in vivo geometries will 
only increase the likelihood that neglecting out-of-plane strain components will result in an 
inaccurate elasticity estimate. This increased accuracy comes, though, at the expense of 
increased computational complexity and increased scan time. For instance, a single acquisition 
of the 3D data discussed in section 4.2 takes over 6 h! This far exceeds any clinically feasible 
scan times. The total experiment time may be lessened through the use of echo-planar imaging 
(Mansfield 1977) or fast spin-echoes (Hennig et al 1986) for spatial encoding (Chenevert et al 
1999). A fast scan implementation has already been used to study cardiac motion (Aletras etal 
1999a). The number of planes of data acquired may also be significantly reduced while still 
allowing a 3D reconstruction, shortening the scan time further. It should be mentioned that a 
classic 3D stimulated echo sequence was deliberately chosen in part due to SNR considerations, 
since a fast scan implementation of the method would generally have a lower SNR than one 
classically phase encoded. Being an inverse problem, the 3D reconstruction is sensitive to the 
SNR, and we wanted the initial test of the reconstruction to be done with the highest SNR data 
possible using this technique. Also, note that the reconstruction in (8) does not rely on the 
assumption of incompressibility, although making this assumption provides another means of 
regularizing the inverse problem. 

Additionally, a reconstruction of static displacement data offers several advantages over 
a reconstruction of dynamic displacement data. A static reconstruction allows one to ignore 
viscoelastic effects as well as the longitudinal or shear nature of the applied deformation. Static 
methods also provide high SNR displacement and strain estimates. Dynamic methods, on the 
other hand, provide a potentially very simple reconstruction (Muthupillai etal 1995). However, 
this reconstruction may be compromised by interference from elastic inhomogeneities, 
attenuation of shear waves, mixing of longitudinal and shear waves, and resolution limits 
imposed by noise when determining the shear-wave wavelength. Reconstruction models that 
include viscoelastic effects allow a more accurate interpretation of dynamic data (Sinkus et al 
1999, 2000, Van Houten et al 1999), but these are necessarily more complicated than static 
models (Skovoroda et al 1995a, 1999). 

Choosing a contour of constant shear modulus for appropriate boundary conditions for (8), 
though, can in practice be a challenge. In the applications discussed here, a priori knowledge 
of phantom geometry was employed in the reconstructions. This may be possible in vivo as 
well, albeit more complicated. For instance, in breast elasticity imaging, such a contour may 
be defined in the subcutaneous fat surrounding the parenchyma using the boundary detection 
procedure described in Skovoroda et al (1995a). The elasticity reconstruction would then be 
relative to the shear modulus of the fat boundary, assuming that it is constant. Alternatively, a 
high signal cuff of known elastic modulus could be used to surround the breast. This would 
provide an absolute image of shear modulus variations if the boundary contour were chosen 
inside the cuff. 
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The 3D shear elasticity reconstructions presented above contain artefacts both inside 
and outside of the inclusion due to the finite SNR in the measured displacement strain 
components, and due to the step size used in the finite approximation to the derivatives in the 
reconstruction. In contrast to the 2D elasticity reconstruction, where the elasticity distribution is 
reconstructed independently in each plane, the 3D reconstruction uses the elasticity distribution 
in neighbouring planes. Therefore, in addition to in-plane error propagation problems 
discussed elsewhere (Skovoroda et al 1995a), error propagation in the through-plane direction 
may occur due to inaccurate elasticity reconstructions in the preceding planes. This is 
particularly true if the 3D elasticity reconstruction is performed, as in this paper, by solving an 
initial value problem in the through-plane direction. Even though the more stable integral based 
approach (Skovoroda et al 1999) was employed to solve for ß(r) in each plane, the results 
of the 3D elasticity reconstructions in subsequent planes exhibit significant error propagation 
in the x^ direction. Given a particular spatial discretization of the displacement data, this 
error propagation can be reduced by several approaches. These include more appropriate data 
filtering and reducing the reconstruction's sensitivity to noise, but these considerations are 
beyond the scope of this paper. 

7. Conclusions 

The ultimate goal of quantitative elasticity imaging is to provide physicians with a method 
of remotely palpating soft tissue to detect disease. The three-dimensional elasticity imaging 
technique demonstrated here is a step toward extending the range and sensitivity of palpation, 
a powerful diagnostic tool. One possible application of this technique would be measuring 
the elasticity of breast tissue normally inaccessible to manual palpation. A large elastic 
modulus difference between normal and pathological breast tissue has been measured in situ. 
A previous study indicates that soft tissues in different physiological states display shear 
modulus variations of one to two orders of magnitude (Sarvazyan et al 1995). If these elastic 
changes pre-date calcification formation, elasticity imaging may increase sensitivity to and 
characterization of malignant breast masses, complementing existing diagnostic tools. The 
relatively high cost of MRI may hinder using this approach as a general screening technique. 
However, additional work to define the role of this modality as a primary or complementary 
diagnostic tool in diseases of soft tissues seems worthwhile indeed. 
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INTRODUCTION 
Elasticity imaging may offer clinicians a non-invasive 

method of remotely palpating patients to detect diseased tissues. 
Tissue elasticity information may be obtained via NMR detection 
of shear waves1 or of static tissue displacement.2 Here we 
present simulation results elucidating the effects of displacement 
sensitivity and applied deformation on the signal-to-noise ratio 
(SNR) of elasticity images obtained using static displacement, 
stimulated echo NMRI (SDSEI). 
PRINCIPLE 

In SDSEI, the object is deformed during the stimulated echo 
mixing time, TM. Local displacements are encoded by means of 
a pulsed gradient applied before and after deformation. The 
sensitivity is given by 

where the displacement sensitivity, <5d, is in radians/distance, Gd 

is the displacement encoding gradient strength, and ris the 
displacement encoding gradient duration. The gradient of the 
displacement field yields the strain field, and the strain field is 
used as an input for a boundary value problem to extract the 
tissue elastic moduli.3 

SIMULATION 
A simple one-dimensional, 100-mm long object is used in 

all simulations. This object contains an inclusion whose shear 
modulus is five times larger than the surrounding material's. 
The pulse sequence assumed is that in the paper by Chenevert et 
al.,2 with TM = 200 ms, x = 4.5 ms, and 225 ms between 
displacement encoding gradients. The NMR resolution is 128 
pixels. The base SNR of the material is set to 130, matching 
the SNR of a tissue-mimicking material measured using the 
SDSEI pulse sequence. 

The variables used are Gd and the normalized applied surface 
deformation, e,,. Since x is assumed constant, Od varies linearly 
with Gd. Gd ranges from 0 to 5 G/cm in 0.2 G/cm increments, 
and eo from 1% to 20% in 1% steps. For each gradient- 
deformation combination, both the NMR image and the elasticity 
image are reconstructed. The reconstructed elastic moduli are 
normalized to the background reconstruction. Then the NMR 
image SNR, SNRo, and the elasticity image SNR, SNRE, are 
calculated. Four different noise instances are averaged for every 
point. 
RESULTS 

Figures la and lb show the SNR0 and the SNRE, 
respectively, of the background. Here we see that the SNRo 
decreases with increasing Gd and £o due to intrapixel dephasing. 
Note that signal loss due to diffusion increases as Gd increases. 
The SNRE begins at 0 for Gd = 0, and then increases with both 
deformation and sensitivity until the intrapixel dephasing is 7t 
radians. Beyond this point it drops off quickly to zero. Again, 
diffusion signal loss is present. 

Figures 2a and 2b show, respectively, the SNRQ and the 
SNRE of the inclusion. Here the major source of signal loss in 
SNR0 is diffusion. Because the inclusion is harder than the 
background, it tends to displace rather than deform under the 
applied surface deformation; hence only the gradient contributes 
significantly to the intrapixel dephasing. The SNRE simply 
seems to exhibit diffusion loss and does not peak as the SNRE of 
the background does. Also note that the SNRE of the inclusion 
is lower than that of the background. 

This can be explained by noting that the elasticity 
reconstruction depends upon the strain field, and the strain is the 
gradient of the displacement field. As noted above, the hard 
inclusion tends to displace, not deform, under a certain surface 
deformation. Thus, not only does the intrapixel dephasing 
decrease, but the interpixd dephasing (i.e., strain) decreases. 
Hence the combinations of Od and e0 presented here do not 
approach the optimal strain fields for the inclusion 
reconstruction. 

Fig. la: Background SNR0 
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Fig. lb: Background SNRE 
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Fig. 2a: Inclusion SNRo 
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Fig. 2b: Inclusion SNRE 
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CONCLUSIONS 
We have illustrated the effect of displacement sensitivity and 

applied deformation on static displacement NMR elasticity 
images and noted the differing optimal imaging parameters for 
tissues with different shear moduli. These results suggest a type 
of adaptive elasticity reconstruction wherein the voxel size for a 
given region of tissue varies inversely with the strain field in 
order to optimize the elasticity reconstruction's SNR. 
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Reconstructive Elasticity Imaging for 
Large Deformations 
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Abstract—A method is presented to reconstruct the elas- 
tic modulus of soft tissue based on ultrasonic displacement 
and strain images for comparatively large deformations. If 
the average deformation is too large to be described with 
a linear elastic model, nonlinear displacement-strain rela- 
tions must be used and the mechanical equilibrium equa- 
tions must include high order spatial derivatives of the dis- 
placement. Numerical methods were developed to reduce 
error propagation in reconstruction algorithms, including 
these higher order derivatives. Problems arising with the 
methods, as well as results using ultrasound measurements 
on gel-based, tissue equivalent phantoms, are given. Com- 
parison to reconstructions using a linear elastic model shows 
that equivalent image quality can be produced with algo- 
rithms appropriate for finite amplitude deformations 

I. INTRODUCTION 

TMAGES of mechanical displacements and strains within 
Xsoft tissue present information about the elasticity of in- 
ternal structures [1]-[21]. Interpreting these images, how- 
ever, can be difficult for complex mechanical objects such 
as soft tissue. To potentially simplify image interpretation 
and reduce artifacts due solely to object geometry, several 
investigators have explored elastic modulus reconstruction 
[9], [10], [17], [22]. Exact reconstruction is impossible with- 
out detailed knowledge of the mechanical boundary condi- 
tions (i.e., the Young's modulus needs to be specified along 
some boundary, as discussed later in this paper). Never- 
theless, methods have been developed to produce relative 
reconstructions, even if detailed mechanical boundary con- 
ditions are unknown [9], [10]. 

Previous work from our laboratories has shown that the 
Young's (or equivalent^ the shear) modulus of soft tissue 
and tissue-like phantoms can be reconstructed from me- 
chanical displacement and strain images acquired during 
static external deformation [5]-[10], [12], [18]-[21]. Differ- 
ent imaging systems (e.g., ultrasound and MRI), as well 
as different deformation procedures, were used to gener- 
ate displacement and strain images. Consequently, effec- 
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tive numerical methods were developed for all systems to 
reconstruct the relative Young's modulus based on a linear 
elastic model. These techniques do not require any infor- 
mation about global boundary conditions (i.e., mechanical 
constraint of the body, its geometry, the types of external 
and internal forces, etc. [9]). In principle, however, they are 
limited to low magnitude external deformations in which 
a linear model is valid. Here we extend these methods to 
finite amplitude deformations. 

Large external deformations increase the signal-to-noise 
ratio (SNR) of displacement and strain images [5]-[10], 
[23]. Unfortunately, large deformations of soft tissue and 
tissue-like materials cannot be described with a linear elas- 
tic model. A linear model can break down in two ways 
First, for most soft tissues, the elastic modulus increases 
as a function of strain (i.e., strain hardening). This effect 
is often referred to as "material nonlinearity." Second  a 
more complete description of the equilibrium equation, in- 
cluding nonlinear strain-displacement relations, must be 
used for large deformations. This effect is often referred 
to as "geometric nonlinearity." Due to the high order dis- 
placement derivatives resulting from this description, error 
propagation must be minimized in any reconstruction al- 
gorithm using measured displacement data with a finite 
signal to noise ratio. 

In this paper, we examine the second form of nonlin- 
earity, namely, geometric nonlinearities arising from large 
amplitude deformations. These studies were conducted on 
gelatin phantoms with almost no material nonlinearities 
over the deformation range considered here (average strain 
up to 14%). Material nonlinearities in soft tissue are con- 
sidered in [24], [25]. The specific purpose of the present 
study was to explore numerical methods minimizing the 
effects of higher order displacement derivatives needed to 
describe finite amplitude deformations on elasticity recon- 
struction. 

Previous algorithms for elasticity reconstruction were 
formulated using the set of equations describing mechan- 
ical equilibrium in a statically deformed, linear elastic 
medium [5], [9], [10], [18]-[21], [24], [26], Independent of 
the specific elastic model, however, these equations can be 
posed in either differential or integral form. An integral 
representation is more appropriate for a nonlinear model 
given realistic measurement noise. As discussed in Sec- 
tion II, numerical methods have been developed for both 
linear and nonlinear models exploiting an integral repre- 
sentation of the reconstruction equations. The specific ap- 
proach assumes a plane strain state to approximate two- 
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dimensional displacement and strain images obtained with 
a real-time ultrasound scanner. The full three-dimensional 
problem is discussed in the Appendix. 

Displacement data acquired with a real-time ultrasound 
scanner were used to test the numerical methods of Sec- 
tion II. Relative elastic modulus images were reconstructed 
within a gel-based, tissue equivalent phantom with pre- 
scribed mechanical properties using both linear and non- 
linear models. Methods for displacement and strain image 
acquisition are presented in Section III. All results are pre- 
sented in Section IV. The paper concludes with a discus- 
sion of the results in Section V. 

II. THEORY 

Consider a three-dimensional (3-D) volume V of 
deformed media with the displacement vector U = 
U(xi,X2,X3) = (ui,U2,us) in Cartesian coordinates Xi, 
i = l,2,3. The volume V can be either the entire mechan- 
ical body or a region of interest inside the object. 

The most general nonlinear mechanical equilibrium 
equations are [27]-[31]. 

S I I>»Ä + "<■")] f    =°   » = 1,2,3.      (1) 
j=l   ln=l J ,j 

Here anj is a component of the 2nd ranked stress ten- 
sor and Sin is the Kronecker delta symbol. In (1), and the 
rest of this paper, the lower index after a comma means 
differentiation with respect to the corresponding spatial 
Lagrangian coordinate. Note that spatial coordinates and 
displacement components correspond to the initial, not de- 
formed, configuration of the object under investigation. 
Similarly, all images are presented in the original object 
geometry (i.e., before deformation). 

Equation (1) must be satisfied at every internal point 
of the body. If the magnitudes of the spatial derivatives 
of all displacement components are small, the last terms 
Uj>n in (1) can be omitted, producing the familiar linear 
equilibrium equations [32], [33]: 

(2) 

To complete the system of equations describing internal 
deformations, the relation between stress and strain ten- 
sors, as well as the relation between the strain tensor and 
the displacement vector, are needed. Here we assume that 
the standard linear relation between the stress tensor err- 
and the strain tensor ey for incompressible media is still 
valid [27]-[34]: 

dij = pSij + 2fi£ij, (3) 

where p is the static, internal pressure and the shear elas- 
tic modulus ß is considered a constant independent of the 
strain magnitude. Computing the spatial distribution of 

the shear elastic modulus is the goal of reconstruction. 
Note in an incompressible material, such as soft tissue, 
the shear and Young's moduli are simply proportional (i.e., 
E = /i/3). Thus, shear modulus and Young's modulus re- 
constructions are equivalent. 

In the following derivation we assume a plane strain 
state in which spatial derivatives of the out-of-plane dis- 
placement U3 are either zero or small compared to the 
others, and the two in-plane components u\ and U2 do not 
vary significantly as functions of the out-of-plane coordi- 
nate [5], [6], [8], [10], [12], [18], [19], [21], [32]. Nonlinear 
elasticity reconstruction for a general three-dimensional 
strain state is considered and discussed in the Appendix. 

Because the pressure p cannot be directly measured 
with an imaging system, it must be eliminated from the 
equations describing mechanical equilibrium [5], [9], [10], 
[18]-[22], [26]. For the linear case, eliminating p from (2) 
and (3) leads to a partial differential equation for the un- 
known shear elasticity distribution p, = p,(x, y): 

\ß£xy),xx       \p£xy),yy "T "{ß^yy), -yyj,xy 0. (4) 

where the spatial coordinates x\ and X2 are denoted here 
by x and y. Note that the incompressibility condition, £n + 
£22 — 0, is used to produce the specific form presented in 
(4). All strains in this equation are defined by the linear 
strain-displacement relation: 

_lin 1 
(Ui.j + ujti). (5) 

The reconstruction procedure assumes that all relevant 
displacements are known (i.e., measured), and solves for 
the shear elasticity distribution satisfying both (4) and 
the mechanical boundary conditions. 

Except for the degenerate (i.e., parabolic) case corre- 
sponding to an in-plane translation with rotation of the 
volume as a rigid body, internal deformations are described 
by a hyperbolic, 2nd order differential equation [9], [26]. 
This means there is a unique shear modulus distribution 
satisfying (4) given appropriate mechanical boundary con- 
ditions. Rather than specifying displacement and stress 
values at the object boundary [17], a much simpler bound- 
ary value problem can be formulated using the method 
of characteristics in which the modulus, and/or spatial 
derivatives of the modulus are specified solely along a set 
of characteristic curves (see [35], Chapter 10). For the dif- 
ferential equation given in (4), these curves are defined by 
all points (x, y) satisfying the following relation: 

,jdy = (e„„ ± yjely + e2
xy ) dx. (6) 

To illustrate how the characteristic curves of (4) help 
formulate elasticity reconstruction as a simplified bound- 
ary value problem, deformation data (i.e., all components 
of the strain tensor) from an inhomogeneous gel-based tis- 
sue equivalent phantom were analyzed. These data were 
collected using the methods described in Section III. The 
characteristic curves computed according to (6) over a 25- 
mm by 65-mm area within the phantom are presented in 
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Fig. 1, Characteristic curves of (6) computed from Ultrasound mea- 
surements an the inhomogeneous gel-based phantom. 

Fig. 1. Displayed here are all characteristics starting at 
the bottom and left side of the region at equal (approxi- 
mately 1.8 mm) intervals- If, for example, the distribution 
ß(x, y) is given along parts AB and AC of two intersect- 
ing characteristics AB' and AC, then the reconstruction 
for region ABDC reduces to a classic Goursat boundary 
problem for (4). In contrast, to get the unique solution of 
(4) within the region CEF. the values of ß, dß/dx, and 
dfi/dy must be prescribed along the single line CE (see 
[35], Chapter 10). 

In this paper we only consider reconstruction based on 
two intersecting characteristic curves defining a region of 
interest (ROI). If the exact value of the elastic modulus is 
not known along these two curves, reconstruction within 
the ROI is relative. That is, the reconstructed modulus is 
normalized to the value along the intersecting characteris- 
tics. Because the primary goal of reconstruction is artifact, 
reduction rather than exact quantitation, a relative modu- 
lus image is sufficient. As discussed in [9], regions of nearly 
constant elastic modulus can be identified with edge de- 
tection operators acting on strain images. 

Using the characteristic curves, numerical methods can 
be developed to solve (4) given displacement measure- 
ments. In practice, however, the problem of elasticity re- 
construction is greatly complicated even in the linear case 
due to noisy displacement measurements (i.e., due to noisy 
coefficients in (4)) and propagation of this noise through 
numerical integration within the ROI. Therefore, a specific 
procedure to integrate (4) across the ROI must be used [5], 
[8]-[10], [12], [18]-[21]. 

To produce a more stable reconstruction procedure ap- 
propriate for noisy deformation data, substitute (3) into 
(2) and integrate rather than differentiate. After eliminat- 

ing the unknown pressure, the system of equations reduces 
to an integral equation of the form: 

S(x,y) = 4[eyyß - {£yyß)U0 - (£yyß)\x<>,vD} + 
V 

I/o 

y 

-/[(7/0,w-{('m).i,}|!Jdz-o. (?) 

where 7 = 2exy and the notations f\xo = f(zo,y) and 
/luo = /(Z) Va) a«3 used in this equation and below. 

The integral equation in (7) is expressed as a functional 
<5(i, y), as the goal of reconstruction with noisy data will 
be to force 6(x, y) to approach zero in some average sense 
across the ROI. In contrast with (4), this equation does 
not contain second order derivatives of the strain. More- 
over, the shear strain, and spatial derivatives of the shear 
strain, only appear in the integral terms. Because noisy 
lateral displacement estimates only contribute to the shear 
strain, the effects of measurement error will be reduced by 
the smoothing action of the integral without sacrificing 
spatial resolution [36]. This type of processing is similar to 
incompressibility methods in which noisy lateral displace- 
ment measurements are smoothed by integrating higher 
SNR axial strains without losing spatial resolution [37], 
[38]. Therefore, elasticity reconstruction by (7) should be 
more stable. 

For large deformations, a similar functional must be de- 
fined from the general equilibrium equations of (1) and the 
general Lagrangian strain-displacement relation. Denoting 
the displacement components i/i and ti2 by u and v, the 
unwrapped form of (l) for the plane strain state is: 

(o-xx,x + &xy,y)(l + %x) + (^ixW.xx + 0yyU,yv) 
+ [^xy,x + <?Vy,y)w,i/ + 2axvuiXy — 0 

(es»,* + CJW,!/)(1 + v,v) + (ffn",!! + &yyv,yy) (8) 
+ (Cxx,x + <?xy,y)v,z + 2crxyV,TJ/ = 0. 

By incorporating the stress-strain relation (3) into (8) and 
rearranging terms, the following linear system of equations 
for derivatives of the unknown static internal pressure, piX 

and ptV, results: 

AV(p) = -pB-Ft (9) 

where 

A(x, y) = ^ + *'* 1 ^ J ,     B{x, y) = (bi) = V2t/, 

F = (/<). * = 1,2; 

V = (d/dz, d/dy),    V2 = d2/dx2 + d*/dy2; 

/l =2[(l+tt,a.)l/>i+tflt,^2 

t  \£xx"'tXx   1  ^yy^syy ~T~ ^^xy^^xy/f^l^ 

h = %,xV>i + (i + v,y)i>2 

>   \^xx^,xx   ■  ^yyV^yy "r &£xy'Vtxy)W>\i 

V'l = {ßsxx)iX + (peSy)Ky    l/>2 = {ß£*y),x + (Mfiyv).v 
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These formulas contain the components of the nonlinear 
Lagrangian strain tensor [27]-[31]': 

Eii = T  I Uij + Ujj + y~] Uk,jUk,j (10) 

For a plane strain state, the strain tensor components take 
the specific form: 

Sxx = !*.* + [(«*)' + (V,x)2]/2I 

*w = v,v + K«,»)2 + (v,v)2]/2, (11) 

Exy = [w,v + V,x + ^tx
u,y + v,xv,y}/2- 

If the magnitudes of the spatial derivatives of all displace- 
ment components are small, the last (nonlinear) term in 
(10) can be omitted to produce the linear strain tensor 
of (5). 

Again, the unknown pressure must be removed from 
(9), To do this, we solve (9) with respect to unknowns piX 

and p>y: 

V(p) = a.p + ß, (12) 

where a{x,y) = (a,:) = -A^B, ß(x,y) = (ft) = -A^F, 
i = 1,2. Then, integrating the first of these equations along 
a; and the second along y, two simultaneous expressions for 
the unknown pressure are produced: 

p(x, y) = ifii 

p(x, y) = ip2 

T. 

—dx 
<Pi 

SO 

V /a 
—dy 
ip-z 

!/0 

(13.1) 

(13.2) 

where <pi(x,y)   =  exp j/^ o;j (x, y)dx}  and ipi(x,y)   = 

exp {-C a'*(x' y)dy] do not depend on (i(x, y). The term 
p{x,yo) in (13.2) can be obtained from (13.1). Similarly, 
the p(x0,y) in (13.1) can be obtained from (13.2). Conse- 
quently, the set of simultaneous equations describing the 
unknown pressure reduces to a single equation, 

<P\ / —dx - tp7 

T0 

X V 

tp-i   /  —dx -<fi2       — 
J    Pi J    V>2 

dy 

i/o va 

+ Pi p/f^dy 
J    P2 

Vu 

Gpo = 0,     (14) 

X<1 

where  G(x,y)   =   [(fi2{x,y)^{x,yn) - pifoy^so.y)] 
does not depend on p(x, y), and p0 = p(xQ, y0). 

The expression given in (14) can be used to reconstruct 
the shear modulus given large deformations. Before defin- 
ing a functional similar to (7) for the nonlinear case, we 
consider a simplification of the matrix A-1 based on an 

assumption of incompressibility. The matrix A 1 is de- 
fined as: 

.,  _   V   -V,x     1 + U,x) 
det(A) 

(15) 

The determinant of A is simply related to the metric ten- 
sor: 

dCt(i4)   =   1+   (UiW  + V.u)  + (U,xV,y  ~  V[XUty)   =   T/0, 

(16) 

where g = det(^) is the determinant of the 2nd ranked 
metric tensor <7y. 

The density p of a deformed medium is related to the 
density pQ of the undeformed medium by [29], [37]: 

P = Po/y/H- (17) 

For incompressible materials g = 1, and det(A)  - 
Therefore, (15) reduces to: 

A-* = 1 + v.y   —u,y 
-«,1        1   +  Un 

(18) 

Substituting (18) into (14) and integrating, we obtain 
an expression for the reconstruction functional in the non- 
linear case, as seen in (19) (top of next page), where 

S   =£: yy 7 = 263 

gx = 2{e[u,yy(l + viV) - viyyu,y] 

+ l[u,xy(l + Viy)-v^yUjy}, 

g2 - 2{-e[vtXX{\ + ux) - ulXXvlX] 

+ 7kicj/(l +ux)- ut„jVlX}. 

In the limit of small displacements, a — 0, ipi = 1, i = 1,2, 
G(x,y) = 0, and all second order terms in gt can be ig- 
nored. For this case, (19) reduces to (7). Consequently, (19) 
can be used as the reconstruction functional over a wide 
range of internal deformations. In contrast to (4), the dif- 
ferential equation for the nonlinear case after eliminating p 
contains 4th order displacement derivatives. Therefore, an 
integral representation for the nonlinear case is also much 
more appropriate given realistic measurement noise. 

To evaluate either (7) or (19), spatial derivatives of 
both the axial and lateral displacement components are 
needed. It is well known, however, that lateral displace- 
ment measurements are much noisier than axial ones if 
ultrasound is used to track internal deformations [7], [37], 
[38]. In addition to smoothing from the integral represen- 
tation of the equilibrium equation, incompressibility pro- 
cessing Can be used in both linear and nonlinear cases to 
further reduce the influence of noisy displacement mea- 
surements [37], [38]. All results presented in Section III 
used lateral displacement estimates obtained from incom- 
pressibility processing. 

To solve for the unknown shear elasticity distribu- 
tion ß(xt y) giv«n all measured displacements and strains 
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6{x,y) = 2{eß - [eß + {£xxfj)\Xoipi]\yoip2 - [eß- (ey^)Uv2]|IOVi} + 

y [(7M),x + Mfc^dy > f2 - <<P2     [(7A*),i + W2]</>2 ^1/ 

y [(7/*).w + m]<Pildx \ if! - i <px J [(-yß),y + ßgilip^dx 

Vi - 

</>2 - Gpo = 0,    (19) 

yo 

within the ROI, a global minimization procedure was used 
[5], [8]-[10], [12], [18]-[21]. This numerical technique is 
general and applies both to linear (7) and nonlinear (19) 
functional. For a given distribution ß(x, y) along the ROI 
boundaries, the error functional 5(x, y) must be minimized 
across the ROI in some general way. Here, the specific dis- 
tribution fiij — ß(xi,yj) is sought which minimizes the 
total error: 

D (I 52ds (20) 

where (XJ,J/J), 0 < i < N, 0 < j < M is a rectangular 
grid covering the ROI. The integral is approximated by 
summing 5(xi,yi) over all grid points. 

In discrete form, when differential and integral opera- 
tors are replaced by discrete-space equivalents, simultane- 
ous minimization of D with respect to all undetermined 
Hij yields a set of linear algebraic equations. In theory, 
therefore, reconstruction is primarily a matrix inversion. 
In practice, however, the matrix is poorly conditioned; it 
is very difficult to produce a stable inverse using noisy, ex- 
perimental data. Alternatively, error minimization can be 
performed with an iterative approach, as discussed below. 

For the nonlinear case, the unknown scalar value po — 
p{xo,yo) in (19) must be estimated prior to general recon- 
struction. This term is estimated independently by mini- 
mizing the error: 

*-(/ 

S2ds (21) 

within a thin region including the ROI boundaries, x — 
x0 and y = y0, 5* = (x0 < x < xi,y0 < y < y\t) U 
(xo < x < XN,y0 < y < y\), in which the distribution of 
ß(x, y) is assumed known given the specified values along 
the boundaries themselves. 

The specific iterative procedure used here to compute 
the distribution ßij = fi(xi,yj) minimizing either (7) or 
(19) over the ROI is based on a gradient method 

M 
fc+i uk- ■X^dD/dßij, (22) 

where k is the iteration index. It starts with a trial so- 
lution ß{i,j). Then, the error D is minimized by varying 

the unknown shear modulus ß at only one given grid point 
(i,j). This procedure is repeated for each (i,j) grid point 
([35], Chapter 20). The iterative parameters A*-, which de- 
termine the step size of the gradient method, were chosen 
based on three estimates of D. That is, the minimum of 
D was locally predicted using a second order polynomial 
approximation of D as a function of ^*- at each grid point 
under the restriction of a decreasing error [5], [8]-[10], [12], 
[18]—[21], [35]. Then, a global linear predictor was used 
to update all A^- simultaneously. This reduced the oscil- 
latory nature of convergence. If the total error remained 
nearly constant at a given step k based on the global lin- 
ear predictor values, then the iterative step sizes Af ■ were 
again selected separately using the local quadratic predic- 
tor as described above. By "ping-ponging" between local 
and global criteria in this way, large oscillations as a func- 
tion of iteration index were greatly reduced, thus speeding 
convergence. 

All spatial derivatives in the reconstruction equations 
were replaced with 2nd order finite differences over the 
same grid (XJ, J/J). Because 2nd order finite differences use 
only information from neighboring pixels, error computa- 
tions were optimized so that for each pioj0 update, the 
error 6ij = 6(xi,yj) was computed only for \i — i0\ < 1 or 
|j _ jo I < 1- Computations continued until the total error 
reached a stable plateau \Dk+1 - Dk\/Dk < £Q. For all 
results presented below, a value of £o = 10-6 was used, 
and a homogeneous medium was the trial solution. It was 
observed that, with different displacement fields and differ- 
ent grid sizes, the algorithm demonstrates approximately 
exponential convergence. By decreasing the grid size, the 
rate of convergence decreased almost linearly. Typical re- 
construction times on a low-end SPARC 2 workstation for 
the results presented below were less than 5 minutes for 
the nonlinear functional (19), and even less for the linear 
functional (7). These algorithms, however, can be further 
optimized for time performance, but this is beyond the 
scope of this paper. 

III. EXPERIMENTAL METHODS AND MATERIALS 

All measurements were made with an ultrasound-based 
deformational imaging system similar to the one presented 
in [24]. A 38-mm wide, linear array transducer operating at 
5 MHz was used for all studies. The array was driven with 
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an Ultramark-9 (ATL Corp, Bothell, WA) real-time ultra- 
sound system operating in conventional B-scan mode. The 
digital radio frequency (RF) signal output by the beam- 
former was captured before subsequent processing and dis- 
play by the Ultramark-9 back-end. By buffering RF data at 
the beamformer output for data capture with an external 
device, live images could be viewed during data capture. 
About 120 consecutive frames of real-time RF data were 
stored using a digital data capture system constructed in 
our lab. At a typical 35 Hz frame rate, this represents al- 
most 4 seconds of phase sensitive ultrasound data that can 
be used for sensitive speckle tracking. 

Measurements were made on two different gel-based 
phantoms. These phantoms were constructed using the 
procedures described in  [5]-[10].  Both phantoms were 
100 mm wide by 140 mm long, where all applied surface 
deformations were vertical, and the depth direction in the 
ultrasound imaging plane also was vertical. The first phan- 
tom was homogeneous and measured 117 mm in height. 
The second was 80 mm high and included a single cylin- 
drical hard inclusion near the bottom of the phantom. This 
inclusion in the inhomogeneous phantom was 18 mm in di- 
ameter and was oriented so that the longitudinal axis of the 
cylinder was perpendicular to both the ultrasound image 
plane and the direction of the applied surface deformation. 
The inclusion was constructed from a higher concentration 
gel. This gel had a shear modulus about 2.5 times larger 
than the surrounding material as estimated from indepen- 
dent measurements of the elastic modulus using the system 
described in [25]. 

Both   phantoms   were   vertically   deformed   with   a 
12.5 mm thick Plexiglas plate attached to a manually con- 
trolled, one-dimensional motion axis. The plate measured 
125 mm by 70 mm in cross section, and almost completely 
covered the top surface of either phantom. Such a large 
plate ensured that a plane strain state was reasonably ap- 
proximated for both phantoms. A hole was cut into the 
center to mount the imaging array. Once the array was 
properly secured, the bottom surface of the plate main- 
tained continuous contact with the top surface of the phan- 
tom. Deformations were applied by smoothly turning the 
gear to move the plate vertically over a distance up to 
30 mm during the 4 second data capture period. Conse- 
quently, very large vertical displacements could be applied 
during continuous ultrasound data capture. 

To test both linear and nonlinear reconstruction pro- 
cedures over a wide deformational range, two data sets 
were recorded for each phantom. Internal displacements 
and strains were imaged in the homogeneous phantom for 
applied surface displacements of 0.7 mm (0.6% average ver- 
tical strain), representing a small deformation, and 7.6 mm 
(6.5% average vertical strain), representing a fairly large 
deformation. For the phantom with a single hard inclu- 
sion, larger surface displacements were used to produce 
strains within the hard inclusion comparable to the av- 
erage strains in the homogeneous phantom. The two data 
sets recorded on this phantom used a surface displacement 
of 2.7 mm (3.4% average vertical strain) for the small de- 

Fig. 2. Measured axial displacement images from the homogeneous 
phantom (left) and phantom with single hard inclusion at the bot- 
tom (right). 

formation case, and 12.8 mm (16% average vertical strain) 
for the large deformation case. 

All displacement and strain images were computed from 
RF ultrasound data using the speckle tracking procedures 
described in [39], [40]. Based on spatial autocorrelation 
analysis of the axial, vertical strain image in the homo- 
geneous phantom [39], the spatial resolution of these im- 
ages was estimated to be about 1.8 mm. Consequently, 
the grid used for all reconstructions had equal 1.8 mm 
spacing in both directions (i.e., Ax = Ay = 1.8 mm). 
The shear modulus was reconstructed in all cases within 
a 25.1 mm x 66.4 mm rectangular ROI located near the 
vertical center line of the ultrasound image. 

For ultrasound speckle tracking using RF data, lateral 
displacement estimates exhibit significantly lower SNR 
than axial (vertical) estimates [38]. To overcome this limi- 
tation, incompressibility processing methods have been de- 
veloped for linear and nonlinear cases [37], [38]. For large 
deformations, the incompressibility condition is: 

(1 + !),„)«,! - v,xutV + V.y = 0. (23) 

As demonstrated in [37], the measured lateral displace- 
ment image uexp(x, y) is used as a reference during lateral 
displacement computation. For the images presented here, 
the reference area was a rectangle 10.5-mm wide located 
near the vertical central line of the ultrasound image. In 
contrast with [37], where a polynomial approximation of 
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Fig. 3. Measured lateral displacements imago* for the homogeneous phantom (far left) and the phantom with a single hard inclusion (second 
from left). Incompressibility processed lateral displacement images for the homogeneous phantom (second fwm right) and the phantom with 
a single hard inclusion (far right). 

the unknown lateral displacement along an entire single 
line yielded a solution of (23), a more flexible approach 
was used here; (23) was solved for a set of particular solu- 
tions of the form UP(XQ, y) = yp,P = 1,2,3 (i.e., 3rd order) 
within the region ya - A < y < j/o -I- A for every interior 
point (IOTÜ/O)- Therefore, a set of particular solutions of 
(23) was obtained within this region, in which the lateral 
displacement u(x, y) is a linear combination of these par- 
ticular solutions. The three unknown coefficients denning 
the linear combination of particular solutions were found 
by minimizing the total error: 

/ 
SR 

(u - vexp)2ds (24) 

across the corresponding area SR = (xs   <   x   <   Xf, 
yo - A < y < ya + A) of the referenced region. 

Prior to reconstruction, both measured axial displace- 
ments and incompressibility processed lateral displace- 
ments were filtered with a two-dimensional Haniming func- 
tion, further reducing the spatial resolution of displace- 
ment, images and subsequent elasticity reconstructions to 
about 2.5 mm. 

IV. RESULTS 

Measured vertical (axial) displacement images over the 
ROI for the large deformation case are presented in Fig. 2 

for the homogeneous phantom [Fig. 2(a)] and the inho- 
mogeneous phantom (Fig. 2(b)]. In all these images the 
transducer, and hence the reference for all displacement 
measurements, is at the top. Consequently vertical dis- 
placement's arc zero at the top, and motion is toward the 
transducer (i.e., negative vertical motion). The display dy- 
namic range for Fig. 2(a) is —5.6 mm to —0.4 mm, and for 
Fig. 2(b) it is -12,6 mm to -1-0 mm. Images of the mea- 
sured lateral displacement are presented in Fig. 3 under the 
same conditions for the homogeneous phantom [Fig. 3(a)] 
and the inhomogeneous phantom [Fig. 3(b)]. The display 
dynamic range for the homogeneous phantom is -1 mm 
to 1 mm, and for the inhomogeneous phantom is -1 mm 
to 4 mm, in which black represents motion to the left and 
white is motion to the right. (The bottom of the phantom 
shifted to the right for the inhomogeneous case, and con- 
sequently an asymmetric display dynamic range is used.) 
Using the measured vertical displacements of Fig, 2, the 
same lateral displacement images after incompressibility 
processing are presented in Fig, 3(c) for the homogeneous 
phantom, and Fig, 3(d) for the inhomogeneous phantom. 

Images of the shear modulus reconstructed using (7) 
and (19) are presented in Fig. 4 for the homogeneous 
phantom. Fig. 4(a) represents the linear reconstruction for 
the small deformation case, whereas Fig, 4(b) represents 
the nonlinear reconstruction. Reconstructions for the large 
deformation case are presented in the lower two panels, 

03/15/01 THU 15:00 
TOTfiL P.04 

[TX/RX NO 6757] 
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where Fig. 4(c) is the linear reconstruction and Fig 4(d) 
is the nonlinear one. These relative modulus images are 
presented over a logarithmic gray scale (0.47 to 2.12)  as 
illustrated on the right. The mean value of the normal- 
ized (i.e. normalized to the average elastic modulus along 
he boundaries of the ROI) reconstructed elasticity dis 

tnbution within the ROI is 1.032 for Fig. 4(a)   1 022 for 
F«. 4(c), 0.991 for Fig. 4(b) and 0.996 for Figj'4 d)  The 
standard deviation is 0.048 and 0.023 for Figs. 4(a) and (c) 
and 0.033, and 0.019 for Figs. 4(b) and (1), respect^ 
Artifacts in the nonlinear reconstructions are no greater 
than those in the linear reconstructions even for small de- 
formations. Horizontal artifacts, created by low SNR lat- 
eral displacement measurements, are present in both lin- 
ear and nonlinear reconstructions. With depth, these ar- 
tifacts have more energy at lower spatial frequencies (i e 
are broader at the bottom of the image) as the lateral point 
spread function of the ultrasound system broadens. 

Images of the shear modulus reconstructed using (7) 
and 19) are presented in Fig. 5 for the «homogeneous 
phantom Fig. 5(a) represents the linear reconstruction for 
the small deformation case, whereas Fig. 5(b) represents 
the nonlinear reconstruction. Reconstructions for the large 
deformation case are presented in the lower two panels, 
where Fig. 5(c) is the linear reconstruction and Fig 5(d 
is the nonlinear one. Exactly the same logarithmic gray 
scale as Fig. 4 was used here. Again, horizontal artifacts 

ÄtSi^especially noticeabie«the 

JlnVrnTCtl°nS- the Unif°rm m«*anical bound- 
the ROT iT KX'yl = l WaS a88umed alonS the ^ of the ROI. Because the equilibrium equation is hvperbolic 
any errors m this assumption produce noise across the en- 
tire reconstruction where the relative magnitude of this 
noise (i.e., \ß - ß\/ß with ß the reconstructed ■ Q md 

A* the true image) is about the same as the magnitude of 
the boundary condition error. This analysis was confirmed 
by simulating numerous elasticity reconstructions of a sin- 
gle hard inclusion in an otherwise homogeneous medium 
where boundary errors were modeled by a 10-term Fourier 
series with random coefficients. 

The results presented in Figs. 4 and 5 demonstrate that 
tue quality of the image reconstructed with the "geomet- 
ric   nonlinear model rivals that of the reconstruction based 
on a linear model, even though high order displacement 
derivatives are used..Moreover, nonlinear processing pro- 
vides more consistent elasticity reconstructions even if hor- 
izontal streak artifacts are slightly elevated compared to 
linear processing. To illustrate this, the elasticity distri- 
bution reconstructed along the central vertical line of the 
^homogeneous phantom is presented in Fig. 6 for linear 
l*ig. 6(a)] and nonlinear [Fig. 6(b)] models. Clearly, non- 
linear processing produces more consistent reconstructions 
independent of the magnitude of the external deforma- 
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Fig. 5. Elasticity distribution for the phantom with a cylindrical hard inclusion at the bottom reconstructed by linear processing (far left) and 
(second from right), and nonlinear processing (second from left) and (far right). Displacement images from a 3.4% mean vertical deformation 
were used m (far left) and (second from left). Displacement images from a 16% mean vertical deformation were used in (second from ri-ht) 
and (far right). ° 

tion. This property holds not only for single line profiles. 
For the homogeneous phantom, the mean squared differ- 
ence between small and large deformation images com- 
puted over the entire ROI is 0.115 for the linear recon- 
struction [Figs. 4(a) and (c)] and 0.076 for the nonlinear 
reconstruction [Figs. 4(b) and (d)]. Similarly, for the inclu- 
sion phantom, the mean squared difference between small 
and large deformation images computed over the top half 
of the ROI is 0.086, and over the bottom half of the phan- 
tom it is 0.181 for the linear reconstruction [Figs. 5(a) 
and (c)], and 0.071 for the top half of the phantom and 
0.152 for the bottom half of the nonlinear reconstruction 
[Figs. 5(b) and (d)]. 

V. DISCUSSION 

The results of elasticity reconstructions presented above 
show that a nonlinear (geometric) model can be used to 
reconstruct the shear (or Young's) elastic modulus based 
on internal displacement and strain fields computed from 
real-time ultrasound data. Despite the high order spatial 
derivatives of both displacement components required for 
this processing, the image quality of reconstructions based 
on a nonlinear model rival those based on a simpler, lin- 
ear model. Moreover, nonlinear processing provides more 

consistent results so that elasticity reconstruction can be 
performed over a wide range of external loading. 

The specific numerical methods developed here exploit 
an integral rather than differential representation of the 
elasticity equations. Given noisy displacement and strain 
estimates, this approach is more robust and leads to more 
stable reconstructions. Moreover, coupled with an iterative 
procedure using both local and global error predictors to 
accelerate convergence, it can produce shear modulus im- 
ages within a few minutes on a low-end, general purpose 
computer. Future work will optimize software running on 
more powerful workstations to reduce reconstruction times 
to a few tens of seconds. Such times are appropriate for 
clinical applications using real-time ultrasound data cap- 
ture and specially constructed hardware for speckle track- 
ing. 

The fundamental hypothesis of this study is that re- 
construction can greatly reduce artifacts in displacement 
and strain images due to global boundary conditions. To 
illustrate this point for the specific example discussed here, 
the results of a simple 1-D elasticity reconstruction are pre- 
sented in Fig. 7. Fig. 7 shows the normalized distribution of 
l/viV for the homogeneous phantom [Fig. 7(a)], and the in- 
homogeneous phantom [Fig. 7(b)] over precisely the same 
display dynamic range used in Figs. 4 and 5. Because the 
homogeneous phantom was constructed to yield a nearly 
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Fig. 6. Elasticity distribution along central vertical line of the inho- 
mogeneous phantom images, reconstructed by linear (left) and non- 
linear (right) processing. 

uniform strain distribution over the ROI, the 1-D recon- 
struction is almost perfect. That is, measurement noise is 
not amplified for this type of processing, leading to a clean 
reconstruction. In contrast, this simple approach produces 
significant artifacts in images of an inhomogeneous object. 
Clearly, as the object becomes more complex, more accu- 
rate reconstruction is required even when uniform, one- 
dimensional loading is used. 

All the results presented in this paper were computed 
assuming a linear stress-strain relation (3). This assump- 
tion is almost perfect over a wide deformation range for the 
gel-based, tissue-like phantoms used here [41]. Real tissue, 
however, exhibits nonlinear behavior (i.e., material nonlin- 
earity) even for simple types of external loading if the de- 
formation is significant [25], [34], [42]. Because ultrasound 
data can be acquired over a wide deformation range, there 
is the possibility that the shear modulus can be recon- 
structed at different strain magnitudes. Over a limited de- 
formation range, the stress-strain curve can be considered 
linear, but with an elastic modulus that depends on the 
instantaneous strain magnitude. Displacement and strain 
data for an ex vivo model of kidney transplant rejection 
acquired over a large deformation range have been ana- 
lyzed with a piecewise linear approximation to produce 

Fig. 7. Normalized distribution of l/v,v for the homogeneous phan- 
tom (left), and the phantom with a single hard inclusion (right). 

images related to the material nonlinearity of the kidney 
[24]. Future work will combine such measurements with 
the methods developed here to image the nonlinear elastic 
properties of tissue. 
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APPENDIX 

Assume that two displacement components are mea- 
sured with high precision within the volume; also, as- 
sume that the third component is estimated less accu- 
rately, as, for example, in elasticity measurements using 

MRI [18], [21]. 

For a general three-dimensional strain state described 
by (1) and (3), the following system of equations analogous 

to (9) is produced: 

AV{p) = -pB - F, (Al' 
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where 
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(l + "l,l       "l,2 "1,3 
"2,1       l+"2,2      "2,3 
"3,1 "3,2       l + "3,3, 

B(x,y) = (bi) = V2U, 

i=l i,j = l 

* = fafc) = (peu)tl + (pe2i),2 + (pe3i),3,    i = 1,2,3; 

V = (d/dXl,d/dX2,d/dx3), 

v2 = d2/dx2
l + d2/dx2

2 + d2/dx2
3. 

Note that the nonlinear form of the strain tensor (10) must 
be used. 

To solve (Al) with respect to unknowns dp/dxi, 
dp/dx2, and dp/dx3, we first compute the determinant 
of matrix A, which is 

det(A) = 1 + DivU + det (U'x UA + det (v* V'z ) 
\V,x V,yJ \wiy W,ZJ 

+ det f a'x u'z ) + det I v,x v[y v,; 
",x   " 

w]X w,z 
\W,X    W,y   WlZ 

where g = det(g%j) is the determinant of the 2nd ranked 
metric tensor gtj. 

Note that for incompressible materials g  =  1, and, 
det(.4) = 1 which greatly simplifies the inversion of (Al): 

V(p) = ap + ß, 

the three-dimensional case reduces to- 

[(<P2^3|x° + <P3<f>2\x%)P0 + {<P2F3\xo + <f3F2\xo) 

+ (F2+F3)]\xo<Pl + 2F1 = 

[(V1V3U; + ¥?3VlLg)P0 + (flF3\xo + ^Fil^o) 

+ (i?l+^3)]Uo^2 + 2F2 = (A4) 

{{WP2\X° + <P2Vl\xo)po + (<PlF2\xo + (p2Fi\xo) 

+ (Fi+F2)}\xo<p3 + 2F3, 

where Po = p(x°1,xlx°3). For a plane strain state (A4) 
reduces to (14). 

Again, in the limit of small displacements, a - 0, <pi = 
1, « = 1,2,3, (A4) can be greatly simplified: 

(^3 U + F2\x0 +F2 + F3)\xo + 2Fi = 
* J 1 

töL; + Fx \xo +FX+ F3)|xo + 2F2 = 

(^2 |,o + Fi|xo + Fi + F2)|xo + 2F3,    (A5) 

where 

F = 2 < (/i£ii)|xo - ^n - / [(ne12),2 - (ßei3),3]dxi 

F2 = 2 <^ (^22)1x5 - ^22 -  I [(A«ei2),i - (^£23),3]rfa;2 I , 

(^£33)1x0 - ^£33 - / [(pen),i - (pe23),2]dx3 
F3 = 2< 

(A2) Equations (A4) and (A5) do not contain high order spatial 
displacement derivatives, compared with their equivalent 

where a(x, y) = (a*) = -A~XB, ß(x, y) = (ß) = -A~lF, differential equations, and therefore, elasticity reconstruc- 
i = 1,2,3. '    tion by (A4) and (A5) should be more stable. Again, (A4) 

By integrating each component equation of (A2) along    and (A5) Sh°W that Spatial derivatives of all displacement 
its corresponding coordinate, we obtain: components are needed in general for elasticity reconstruc- ts corresponding coordinate, we obtain: 

p(xi,x2,x3) =(p1p(x0
1,X2,X3)+F1 

= <P2P(xi,x%,x3) + F2 

= <P3P(xi,x2,x%)+F3 

tion in both linear and nonlinear cases, but any one of 
the three displacement components can be reconstructed 
using incompressibility processing based on the relation 

(A3)     (det(i4) - 1) [37]. 

where 

<Pi(xi,x2,x3) =exp 

Xi 

I ai(xi,x2,x3)dxi 
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